Topics in Computer Architecture
Research

Best Paper Nominees at HPCA 2024

Outline

* Tori Koizumi (Nagoya Institute of Technology), Ryota Shioya, She Sugita,
Taichi, Amano, Yuya Degawa, Junichiro Kadomoto, Hidetsugu Irie, Shuichi
Saki (University of Tokyo) “Clockhands: Rename-free Instruction Set
Architecture for Out-of-order Processors”

* Bongjoon Hyun, Taehun Kim, Dongjae Lee, Minsoo Rhu (KAIST) “Pathfinding
Future PIM Architectures by Demystifying a Commercial PIM Technology”

* Johannes Wikner, Daniel Trujillo, Kaveh Razavi (ETH Zurich) “Phantom:;
Exploiting Decoder-detectable Mispredictions”

CIOCkhandS (Best Paper Nominee MICRO23)

Remember Re-ordering?

Minimize WAR and WAW hazards by register renaming!

div(t0)t1, t2 div(t0)t1, t2

What if we could

addt3,E0)t4 Uy add X,(£0)t4

registers X and Y?

sw.t3. 0(s0) ﬁ sw X, O(s0O)

sub t4. t5, t6 sub Y, t5, t6

mul t3, t5, t4 mul t3, t5, ¥

div(t0)t1, t2

sub Y, t5, t6
mul t3, t5, Y

add X (t0)t4

sw X, 0(s0O)

Anyone ever write code like this?

// step 1. access some data // step 1. access some data
int *x = arr[1024]; lw(@0) 1024(s0)

*X += &, in assembly... addi a0, a0,

// step &. access some other data qsw a0, 1024 EEEERGIEERC T LY ey
X = arr[2048]; // step . acc

¥ 4= 4- lw a0, 2048(s0)

addi a0, a0, 4

sw 2048(s0)

Problem

» O3 CPUs use a lot of power to perform tasks like register renaming, but
register renaming is limited by false dependences

 False dependences are somewhat inevitable because developers (and
compilers) are bad at assigning registers!

o But, this isn’t their fault, it’s the ISA’s fault!

Chat with your neighbors!

 What questions do you have?
* Brainstorm: How could we fix the problem?
 What leads to a false dependence?

« What about the ISA causes this?

Proposed Solution

* No destination registers in ISA!

* All instructions operands are in terms of “how many instructions ago” was the
operand produced

Proposed Solution (v1)

// step 1. access some data // step 1. access some data,

lw 2.0, 1024(s0) lw 1024 ([n])

addi a0, a0, 2 addi , &

sw a0, 1024(s0) Becomes... sw [O0], 1024([n + 2])

// step &. access some other data q // step &. access some other data
tor 20, 028(=0) Next register is allocated tor 2O&8([n + 21

addi a0, a0, 4 from ring buffer of available addi[0], 4

physical registers!
sw a0, 2048(s0) sw 0], 2048([n + 5])

Proposed Solution (v1)

 No false dependences,
 Uses way more register
e How do we handle loop
o for(inti=0;i< 100;
* | keeps getting furthe
 Handle this by calling

Register lifetime (instructions)
1 10 100 1E3 1E4 1ES 1E6 1E7 1E8 1ES9 1E101E111E121E131E14

o
[N

0.01

0.001

1E-04

1E-05

1E-06

= = =
m M om
= o O
o w o

[N
m
Y
WY

Ll

o

| v
} [.b . 3
! -‘.'.. : \‘a
! - + - —%

1E-12

1E-13

Definition frequency of registets that have >k-instruction lifetime

1E-14

=

r almost every instruction

400.perl... 401.bzip2 403.gcc 410.bwaves 416.gamess nce away

429.mcf ——433.milc 434.zeusmp 435.grom... 436.cuct...
——437.leslie3d —444.namd 445.gobmk 447.dealll 450.soplex
453.povray 454 .calculix 456.hmmer —458.sjeng ——459.Gem...
462.libq... 464 .h264ref 465.tonto 470.lbm 471.omn...
473.astar 481.wrf 482.sphin... 483.xalan... 600.perl...
—602.gcc.s —603.bwav... —605.mcf_ s —607.cactu... —619.lbm_s
—620.0mn... 621.wrf s 623.xalan... 625.x264 s 627.cam4_s
628.pop2_s 631.d.sjen... — 638.imagi... 641.leela_s 644.nab_s

648.exch... 649.foton... 654.roms_s 657.xz_s

Proposed Solution (v2)

 Don’t just naively allocate from a ring
buffer...

» Different variables have different purposes S t u Vv

1. s —> stack pointer and function args
2. t —> temporary variables

3. U —> variables with long lifetimes

4. v —> loop constants

» | et’s allocate registers according to their
usage as defined by the developer!

Proposed Solution (v2)

RISC-V immediate srcl reg# | dst reg# opcode
funct | src2 reg# | srcl reg# | dst reg# opcode
vl STRAIGHT immediate . srcl d!st. opcode
funct | src2 dist. srcl dist. opcode

: : ict |Srcl] dst
V2 Clockhands immediate . srcl d!st. a“"lhj"{’ opcode
funct [src2 dist.[§52]src1 dist. [$ECL[83 opcode

32 (= 279)
128 (= 2°7)

128 (= (275) * 4)

What is the maximum allowable number of usable
registers in each ISA?

Proposed Solution (v2)

* |mplemented compiler as LLVM

extension

 Implemented ISA on an FPGA

1

= = =
m m m ©
o o o o
0o o)) 5 = L

Definition frequency

1E-10

1E-12

Register lifetime (instructions)

100 1E4 1E6

\;

s

RISC-V

1E8 1E10 1E12

Definition frequency

Register lifetime (instructions)

1 100

1E4 1E6 1E8 1E10 1E12

STRAIGHT

Definition frequency

0.01

1E-04

1E-06

1E-08

1E-10

1E-12

1

Register lifetime (instructions)

100 1E4 1E6

Clockhands

1E8 1E10 1E12

—— CoreMark
401.bzip2
605.mcf_s
619.lbm_s

657.xz_s

Figure 17: Frequency at which a destination register is defined with a lifetime greater than a certain number of instructions
(same as Fig. 4).

1 10 100 1E3 1E4 1E5 1E6

1.

0.1
0.01
0.001
1E-04
1E-05

1E-06

CoreMark

\

1.

0.01

1E-04

1E-06

1E-08

1E-10

1

—

100 1E4 1E6 1E8 1E10

N\

1.

401.bzip2 | .
1€-04

N 1E-06
- 1€-08

1 1€-10

1 100 1E4 1E6 1E8 1E10

605.mcf s

1.

0.01

1E-04

1E-06

1E-08

1E-10

1 100 1E4 1E6 1E8 1E10

==

—

™

|

619.lbm s

|

L

1.

0.01

1E-04

1E-06

1E-08

1E-10

1 100 1E4 1E6 1E8

_K‘.\ 657xz s —V

[

Figure 18: Frequency at which a destination register is defined with a lifetime greater than a certain number of instructions
(same as Fig. 4). The vertical axes indicate definition frequency and the horizontal axes indicate register lifetime.

What do you think?

Demystifying a Commercial PIM
Technology (sest Paper Winner HPCA24)

Remember the Memory Hierarchy?

Registers @ @O OO0 O®

L2 Cache

Thinking about

architecture as boxes
hides detalls!

L3 Cache

Let’s Dig into Memory!

Registers @ @O OO0 O®

L2 Cache

L3 Cache

“According to our study,
more than 88% of the total

training time Is consumed by

transferring data” —
Smartinfinity (HPCA 2024)

Let's D

g Into Memory!

| I S S S
o L[L[L[L
o L Ly L] 1
—o—Er T [T T [
< Ot L
2 Ly L] L] L
=) = = = =
o[T T T 1
2t 1Y 1 1t
g i L] L 1
T T Tl
N T Lt
1 1 L] 1
RAS™Tlodet 0 g ofyt o1 apoy
VI VL VLV
e LATCH
¥ $ ¢ ¥
Aol || DATA SELECTOR (4 TO 1 MUX)

D.O. (DATA OUT)
TRI STATE
| BUS

Image credit: https://en.wikipedia.org/wiki/
Dynamic random-access memory

Image credit: https://www.tomshardware.com/news/ddr5-
specification-released-fast-ram-with-built-in-voltage-regulators

https://www.tomshardware.com/news/ddr5-specification-released-fast-ram-with-built-in-voltage-regulators
https://www.tomshardware.com/news/ddr5-specification-released-fast-ram-with-built-in-voltage-regulators
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory

Let’s Dig Into Memory!

Iconnection to host processors

NDP ctrl NDP ctrl

bank EJ bank bank [bank bank [§ bank bank K bank

‘ bank bank bank bank '| bank bank bank bank ,

NDP vaulits main memory

Image credit: my former lab mate Jiwon Choe :-)

Processing In-Memory (PIM)

e What if we didn’t have to transfer data into the
memory hierarchy?

 What if there was a data processing unit on the
memory die?

Image credit: https://thememoryguy.com/upmem-releases-processor-in-
memory-benchmark-results/

\ 1 /
g p *a
y

N
Larger bandwidth

2,5 Tera bytes per second of

memory bandwidth

Image credit: https://www.upmem.com/

https://thememoryguy.com/upmem-releases-processor-in-memory-benchmark-results/
https://thememoryguy.com/upmem-releases-processor-in-memory-benchmark-results/
https://www.upmem.com/

Processing In-Memory (PIM)

* (Great idea, right?

 “We’'ve investigated applying PIM to our workloads and determined there are
several challenges to using these approaches. Perhaps the biggest challenge
of PIM is its programmability. It is hard to anticipate future model
compression methods, so programmability Is required to adapt to these.
PIM must also support flexible parallelization since it is hard to predict how

much each dimension (of embedding tables) will scale in the future.”
— Facebook, 2021

UPMEM-PIM

” Control / Status DDR4
1 . ;’ Interface Interface
a . Processor [+ Processor Atomic P
m e - - 0xFO000000
= DRAM Processing Unit (DPU) -
o - M oad/store oad/store Ox80008000
a o load/ load/ _
Z E " Scratch 0x80000000
= 2= pad Scratchpad)
L E - d E @ Atomic St oadstore [IRAMY 0x0C000000
- MRAM
g MemOry Bus < 5 g load/store l DMA : 0x08000000
< m g t 8 IRAM CRAM ORAM 0x00010000
9 ' 3 8 a (MRAM) 0x00000000
-
§ m - ac W (a) CUDA (b) UPMEM-PIM (c) UPMEM-PIM physical
€4 address space

Fig. 3: Memory model of (a) CUDA and (b) UPMEM-PIM. (c) The
(physical) address map of UPMEM-PIM.

Fig. 1: UPMEM-PIM b4t iware syst

writeable instruction
scratchpad scratchpad

UPMEM-PIM

e 20 double-ranked UPMEM-PIM DIMMs

8 DPUs per DRAM bank (where each has 64MB of private memory +
scratchpads)

8 DPU chips per memory rank
e 20x2 x8 x8=2560 DPUSs!

uPIMulator

[[e T T T s
void vector additiod{int *A, int *B, int *C vector addition 1 A
e e - vector_sddton: Frontend (code/data gen) Backend (cycle-level performance simulator) ;
Cli] = Alf] + B{i; — jeq r2, 0, LBBO_2 UPMEM-DIMM I
, @ S| | ume " Lexer || Atomic.bin | Thread ;
nt main{) { - O LBBO_1: : :
vector_addition(A, B, C); g- g wr3,r1,0 Scheduler - V!
retum 0; | wrd, r0,0 — - |
} Application source codes (@) C:L addr3, r4, r3 / m H = g :
(& 0 i
1 s £[] -2 Initialization = |

Q :

void * w E memcpy': Llnker] = m 1
memcpylvoid *dest, const void *src, size t E Q. Lfunc_beginl: MRAM.bln 5 elanianlialler-1480l4 8 =
en) 3 add r2, r0, r2 = - 1
{ & 3| umes —Finalization :
uint8_t *d = (uint8_t *)dest; - & or 3, 1, 10 Assembler Input data '
const uintB t *s = (const unt8 t *)src; S Ltmp6: : I
add rd, 10, 3 IS, A — I e e T S et !
} Library source codes Assembly codes/ \ (tension & Mapping WVHCIOAIiReCIure LESIgn & LONJIgUralion /

~---‘

Fig. 4: uPIMulator simulation framework overview.

Chat with your neighbors!

 What do you think about PIM?
Do you agree with Facebook’s claim about usability?

 What do you think are the implications of specialization versus
generalizability?

« Will UPMEM fail??7?

Limitations of PIM

* Really hard to do coherence between processor memory and PIM memory
* |s it useful to have programmable logic on a memory die?

 Why not just make a fixed-logic accelerator?
 What if my offloaded program could benefit from a bigger cache?

 What’s the right granularity of computation? PIM versus NDP versus NMP
versus NSP versus PUM

Phantom (Best Paper Nominee MICRO23)

Remember Flush + Reload Attack?

// flush the line
clflush OxLIBCADDR,;

// wait some time
t1l = time.now();
while (time.now() -t1 < 100ns) {};

// access line
t& = time.now()

x = *(0xLIBCADDR);

// if slow access, unused
// else, used!

28

Remember Flush + Reload Attack?

if (stremp(argv[1], “supersecretdata”™) == 0) { We know this Is
x = data[addrl]; going to execute

| |
! else | speculatively!

&

X =dataladdrz]; &L
}

Remember Speculative Execution?

 We use the BPB to predict outcomes and the BTB to predict targets

* This allows the processor to race ahead of the actually evaluated truth most
of the time!

* We use the ROB to execute instructions without committing them

 Window of time between when a prediction is made and is evaluated is called
transient execution or the speculative window

* Code snippets (gadgets) that leak information speculatively are called spectre
gadgets

Types of Spectre Attacks

o Spectre vl (Bounds Check Bypass): If an array is accessed inside a
speculative window at a parameterized index, pass an illegal index to read

memory from elsewhere — the branch will be squashed and the data will be
In the cache

o Spectre v2 (Branch Target Injection): An attacker may poison all of the
potential branch targets for particular addresses to point to some malicious
code. Only when the branch target is resolved will the malicious region be
squashed, but the data from this malicious region will be in the cache

 Phantom: you will help unpack!

Chat with your neighbors!

“We hypothesize that the asymmetric combinations of branch
types will likely lead to short mispredictions that the CPU can
detect during decode due to mismatching instruction types.
Consequently, our analysis could benefit from observation
channels that allow us to infer how far in the pipeline a
mispredicted control flow advances. For example, if we observe
transient memory operations from the mispredicted target, we can
infer that the mispredicted control flow reached Execute (EX) and
advanced through the preceding stages, namely IF and ID”

Phantom

leave breadcrumb in
the cache

* Create a target that maps from
iInstruction at address A to target
instruction C

* Flush instruction B from the
|Cache so that fetching it and
decoding it will be slow

signal EX

Figure 4: In €), A creates a BTB entry to C, so that in @), the victim
°
SO IO N g as B aISO m apS to C 4 C instruction of B may reuse that BTB entry. The instructions in C emit

W| I I execute tranSientIy a transient execution signal. By fetching and decoding C, transient

fetch and transient decode signals are already emitted.

Phantom

e How bad is it?

 [ake Vasilis’ class to see just how bad this is!

7.1 Breaking kernel image KASLR

We show how we can derandomize kernel image KASLR on AMD
microarchitectures with PHANTOM speculation. We run Linux ker-
nel 5.19 with the latest patches.

1 nop DWORD PTR [rax+raxx1+0x0]
2 push rbp
3 mov rbp, rsp

L

Listing 1: We trigger speculation at the nop instruction in
__task_pid_nr_ns(). Found at kernel image offset 0xf6520.

Phantom: Follow Up Thoughts

* |s this actually a new Spectre variant?
* |s this dangerous?

e |s this cool?

Concluding Thoughts

 Research in architecture is super diverse!
* General themes are:

1. Software uses hardware, so hardware should be better!
Software uses hardware, so software should be better!
Architecture is heterogeneous, can we offload?

Can we make components in architecture more efficient?

o &~ Wb

Architecture Is broken because it’s insecure

* You are now hopefully equipped with the vocabulary to see why these problems are interesting
and/or hard!

