
Best Paper Nominees at HPCA 2024

Topics in Computer Architecture
Research

Outline

• Tori Koizumi (Nagoya Institute of Technology), Ryota Shioya, She Sugita,
Taichi, Amano, Yuya Degawa, Junichiro Kadomoto, Hidetsugu Irie, Shuichi
Saki (University of Tokyo) “Clockhands: Rename-free Instruction Set
Architecture for Out-of-order Processors”

• Bongjoon Hyun, Taehun Kim, Dongjae Lee, Minsoo Rhu (KAIST) “Pathfinding
Future PIM Architectures by Demystifying a Commercial PIM Technology”

• Johannes Wikner, Daniel Trujillo, Kaveh Razavi (ETH Zurich) “Phantom:
Exploiting Decoder-detectable Mispredictions”

Clockhands (Best Paper Nominee MICRO23)

Remember Re-ordering?

div t0, t1, t2

add t3, t0, t4

sw t3, 0(s0)

sub t4, t5, t6

mul t3, t5, t4

div t0, t1, t2

add X, t0, t4

sw X, 0(s0)

sub Y, t5, t6

mul t3, t5, Y

Minimize WAR and WAW hazards by register renaming!

What if we could
use temporary

registers X and Y?

div t0, t1, t2

sub Y, t5, t6

mul t3, t5, Y

add X, t0, t4

sw X, 0(s0)

We can do work
between when we wait

fro the result of the
division by reordering!

Anyone ever write code like this?

// step 1. access some data

int *x = arr[1024];

*x += 2;

// step 2. access some other data

x = arr[2048];

*x += 4;

// step 1. access some data

lw a0, 1024(s0)

addi a0, a0, 2

sw a0, 1024(s0)

// step 2. access some other data

lw a0, 2048(s0)

addi a0, a0, 4

sw a0, 2048(s0)

in assembly…

Is this a dependence?

Problem

• O3 CPUs use a lot of power to perform tasks like register renaming, but
register renaming is limited by false dependences

• False dependences are somewhat inevitable because developers (and
compilers) are bad at assigning registers!

• But, this isn’t their fault, it’s the ISA’s fault!

Chat with your neighbors!

• What questions do you have?

• Brainstorm: How could we fix the problem?

• What leads to a false dependence?

• What about the ISA causes this?

Proposed Solution

• No destination registers in ISA!

• All instructions operands are in terms of “how many instructions ago” was the
operand produced

Proposed Solution (v1)

// step 1. access some data

lw a0, 1024(s0)

addi a0, a0, 2

sw a0, 1024(s0)

// step 2. access some other data

lw a0, 2048(s0)

addi a0, a0, 4

sw a0, 2048(s0)

// step 1. access some data

lw 1024([n])

addi [0], 2

sw [0], 1024([n + 2])

// step 2. access some other data

lw 2048([n + 3])

addi [0], 4

sw [0], 2048([n + 5])

Becomes…

Next register is allocated
from ring buffer of available

physical registers!

Proposed Solution (v1)

• No false dependences, but…

• Uses way more registers! Consumes new register for almost every instruction

• How do we handle loop constants?

• for (int i = 0; i < 100; i++) {}

• i keeps getting further and further away!

• Handle this by calling mv [n] to keep i a fixed distance away

Proposed Solution (v2)

• Don’t just naively allocate from a ring
buffer…

• Different variables have different purposes

1. s —> stack pointer and function args

2. t —> temporary variables

3. u —> variables with long lifetimes

4. v —> loop constants

• Let’s allocate registers according to their
usage as defined by the developer!

Proposed Solution (v2)

v1

v2

32 (= 2^5)

What is the maximum allowable number of usable
registers in each ISA?

128 (= 2^7)

128 (= (2^5) * 4)

Proposed Solution (v2)

• Implemented compiler as LLVM
extension

• Implemented ISA on an FPGA

What do you think?

Demystifying a Commercial PIM
Technology (Best Paper Winner HPCA24)

Remember the Memory Hierarchy?

L2 Cache

ICache DCache

L3 Cache

memory

Registers

Thinking about
architecture as boxes

hides details!

Let’s Dig into Memory!

L2 Cache

ICache DCache

L3 Cache

memory

Registers

“According to our study,
more than 88% of the total

training time is consumed by
transferring data” —

SmartInfinity (HPCA 2024)

Let’s Dig Into Memory!

Image credit: https://www.tomshardware.com/news/ddr5-
specification-released-fast-ram-with-built-in-voltage-regulators

Image credit: https://en.wikipedia.org/wiki/
Dynamic_random-access_memory

https://www.tomshardware.com/news/ddr5-specification-released-fast-ram-with-built-in-voltage-regulators
https://www.tomshardware.com/news/ddr5-specification-released-fast-ram-with-built-in-voltage-regulators
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory

Let’s Dig Into Memory!

Image credit: my former lab mate Jiwon Choe :-)

Processing In-Memory (PIM)

• What if we didn’t have to transfer data into the
memory hierarchy?

• What if there was a data processing unit on the
memory die?

Image credit: https://thememoryguy.com/upmem-releases-processor-in-
memory-benchmark-results/

Image credit: https://www.upmem.com/

https://thememoryguy.com/upmem-releases-processor-in-memory-benchmark-results/
https://thememoryguy.com/upmem-releases-processor-in-memory-benchmark-results/
https://www.upmem.com/

Processing In-Memory (PIM)

• Great idea, right?

• “We’ve investigated applying PIM to our workloads and determined there are
several challenges to using these approaches. Perhaps the biggest challenge
of PIM is its programmability. It is hard to anticipate future model
compression methods, so programmability is required to adapt to these.
PIM must also support flexible parallelization since it is hard to predict how
much each dimension (of embedding tables) will scale in the future.”  
— Facebook, 2021

UPMEM-PIM

14 stage pipeline writeable
scratchpad

instruction
scratchpad

performing atomic
instructions

UPMEM-PIM

• 20 double-ranked UPMEM-PIM DIMMs

• 8 DPUs per DRAM bank (where each has 64MB of private memory +
scratchpads)

• 8 DPU chips per memory rank

• 20 x 2 x 8 x 8 = 2560 DPUs!

uPIMulator

Chat with your neighbors!

• What do you think about PIM?

• Do you agree with Facebook’s claim about usability?

• What do you think are the implications of specialization versus
generalizability?

• Will UPMEM fail???

Limitations of PIM

• Really hard to do coherence between processor memory and PIM memory

• Is it useful to have programmable logic on a memory die?

• Why not just make a fixed-logic accelerator?

• What if my offloaded program could benefit from a bigger cache?

• What’s the right granularity of computation? PIM versus NDP versus NMP
versus NSP versus PUM

Phantom (Best Paper Nominee MICRO23)

Remember Flush + Reload Attack?

28

CPU CPU

shared cache

🕵💁 // flush the line

clflush 0xLIBCADDR;

// wait some time

t1 = time.now();

while (time.now() - t1 < 100ns) {};

// access line

t2 = time.now()

x = *(0xLIBCADDR);

access_time = time.now() - t2;

// if slow access, unused

// else, used!

Remember Flush + Reload Attack?

if (strcmp(argv[1], “supersecretdata”) == 0) {

x = data[addr1];

} else {

x = data[addr2];

}

We know this is
going to execute

speculatively!

CPU CPU

shared cache ?

🕵💁

Remember Speculative Execution?

• We use the BPB to predict outcomes and the BTB to predict targets

• This allows the processor to race ahead of the actually evaluated truth most
of the time!

• We use the ROB to execute instructions without committing them

• Window of time between when a prediction is made and is evaluated is called
transient execution or the speculative window

• Code snippets (gadgets) that leak information speculatively are called spectre
gadgets

Types of Spectre Attacks
• Spectre v1 (Bounds Check Bypass): If an array is accessed inside a

speculative window at a parameterized index, pass an illegal index to read
memory from elsewhere — the branch will be squashed and the data will be
in the cache

• Spectre v2 (Branch Target Injection): An attacker may poison all of the
potential branch targets for particular addresses to point to some malicious
code. Only when the branch target is resolved will the malicious region be
squashed, but the data from this malicious region will be in the cache

• …

• Phantom: you will help unpack!

“We hypothesize that the asymmetric combinations of branch
types will likely lead to short mispredictions that the CPU can
detect during decode due to mismatching instruction types.
Consequently, our analysis could benefit from observation

channels that allow us to infer how far in the pipeline a
mispredicted control flow advances. For example, if we observe

transient memory operations from the mispredicted target, we can
infer that the mispredicted control flow reached Execute (EX) and

advanced through the preceding stages, namely IF and ID”

Chat with your neighbors!

Phantom

• Create a target that maps from
instruction at address A to target
instruction C

• Flush instruction B from the
ICache so that fetching it and
decoding it will be slow

• So long as B also maps to C, C
will execute transiently

leave breadcrumb in
the cache

Phantom

• How bad is it?

• Take Vasilis’ class to see just how bad this is!

Phantom: Follow Up Thoughts

• Is this actually a new Spectre variant?

• Is this dangerous?

• Is this cool?

Concluding Thoughts

• Research in architecture is super diverse!

• General themes are:

1. Software uses hardware, so hardware should be better!

2. Software uses hardware, so software should be better!

3. Architecture is heterogeneous, can we offload?

4. Can we make components in architecture more efficient?

5. Architecture is broken because it’s insecure

• You are now hopefully equipped with the vocabulary to see why these problems are interesting
and/or hard!

