
Security for Architects (Part 1)

1

Security/Privacy

2

Talking About Security…

• The goal is not to scare you!

• “Architecture in the wild”

• The cost of optimizations

3

Chat with your neighbor!

• How security-conscious are you?

• What steps do you take to ensure you privacy?

• What security expectations do you have of your computing devices?

• Should researchers work to uncover security vulnerabilities?

4

Outline

• Introduce the “security stack”

• Fundamental architecture security vulnerabilities

• Some mitigating architectures

5

Security Stack

Humans

Software

Hardware

Heterogeneity

Answering
phone calls
and opening

links in emailsWhat do I
trust?

Running guest
code on my

device
Sandboxing

guest code in
trusted

hardware

!!!!

What functionality
am I giving up?

6

Security Stack

• How does hardware leak information?

• Side channels: Incidental information leakage inferred from observing normal
execution

for (;;) {
// super intense computation!

}
💨💨💨💨💨

7

Architecture Security

• How precise can information be leaked from architecture behaviors?

• It depends…

#include <stdlib.h>

…

#include <stdlib.h>

…

main memory libc

8

Flush + Reload Attack

CPU CPU

shared cache

🕵💁 // flush the line
clflush 0xLIBCADDR;

// wait some time
t1 = time.now();
while (time.now() - t1 < 100ns) {};

// access line
t2 = time.now()
x = *(0xLIBCADDR);
access_time = time.now() - t2;

// if slow access, unused
// else, used!

9

Flush + Reload Attack

• So what? An attacker knows that I used libc…

• An example in the wild from RSA encryption/decryption where
e is secret!

courtesy: USENIX Security ‘14

Multiply, Reduce

Square, Reduce

10

Flush + Reload

• Shared libraries/software can be accessed by any processor

• Open-source software is out there to be analyzed

• Data dependent behavior can dictate the cache state/access times

• Spies can infer precise values from hits and misses to shared data

11

Flush + Reload: Chat with your neighbors!

• Is this vulnerability dependent on the cache?

• If we care about privacy, are we totally screwed?

12

Flush + Reload

• Dependent on clflush operation (10 points to RISC-V!)

• Dependent on very precise timers (nano seconds granularity!)

• What if the ISA/hardware didn’t allow for such precise timing?

13

Prime + Probe

• Not so fast…

• We may not be able to time individual accesses, but we can measure the
impact of misses due to cache contention

CPU CPU

shared cache

🕵💁

14

Prime + Probe

🕵

100 ms 100 ms 100 ms

I can determine the amount of
cache contention by counting
how many blocks I can access

in some amount of time

15

Prime + Probe

• Wait, but this is information is much less precise… how would a spy use that
information?

• These attacks are generally used for leaking bigger picture information like
website fingerprinting

How
much

information can
be leaked?

It depends!

Should I be
scared?

It depends!

16

Architecture Mitigations

• How can we defend against these attacks? We need to understand what
enables these attacks!

• Shared libraries can be an avenue for leaking information via Flush + Reload
attacks

• Certain instructions make these attacks possible

• Shared hardware allows attackers to flush/probe your data

17

Architecture Mitigations

• Oblivious RAM: remove correlation between behavior and impact on
architectural state

• i.e., scan all of memory for every operation

• Trusted Execution: isolate the sensitive process in a specialized region of
hardware

• i.e., Intel SGX, ARM TrustZone, RISC-V Keystone, etc.

• Cache partitioning: each processor gets assigned to a region in each shared
cache and can only access its region

18

Oblivious RAM

• Hide information by removing correlation between observations and inference

• Often done at the algorithmic level (not really an architecture)

• Very theoretical

19

Trusted Execution

• Often very architecture dependent on what the specs are and what the
guarantees are

• Separate caches for isolation, separate register state, etc…

• Often very slow!

• Subject to any underlying architecture vulnerabilities!

20

Cache Partitioning

• Provides isolation in the cache, which eliminates shared access

• Leads to inefficient use of the cache… fragmentation!

• Research into scalable cache partitions, but even these leak data!

21

Still to come!

• Spectre/Meltdown attacks

• Rowhammer attacks

• HertzBleed

• Bus Leakage

22

Concluding Thoughts

• You don’t have to be scared about what is in your cache state, but you should
be aware of what’s in your cache state

• These vulnerabilities are born out of powerful, smart optimizations! But
performance benefits aren’t always for free…

• Working on mitigating these vulnerabilities well is an active ongoing effort!

• So should I just give up and use an abacus?

23

