Security for Architects (Part 1)

y ﬁ
a M \
OO
Security/Privacy

Talking About Security...

 The goal is not to scare you!
e “Architecture in the wild”

 The cost of optimizations

Chat with your neighbor!

 How security-conscious are you?
 What steps do you take to ensure you privacy?
* What security expectations do you have of your computing devices”?

» Should researchers work to uncover security vulnerabilities?

Outline

* |ntroduce the “security stack”™
 Fundamental architecture security vulnerabilities

 Some mitigating architectures

Security Stack

Sandboxing
guest code In
trusted

Answering
phone calls
and opening
link
Cirast? A —i
code on my
trUSt? de'"~--

.\

What functionality
am | giving up?

Security Stack

 How does hardware leak information?

» Side channels: Incidental information leakage inferred from observing normal
execution

for (55) {
// super intense computation!

)

Architecture Security

« How precise can information be leaked from architecture behaviors?

* |t depenads...

8

Flush + Reload Attack

N
(o o)

N=F -

// flush the line
clflush OxLIBCADDR,;

// wait some time
t1l = time.now();
while (time.now() -t1 < 100ns) {};

// access line

t& = time.now()

X = *(OxLIBCADDR);
access_time = time.now() - t&;

// if slow access, unused
// else, used!

Flush + Reload Attack

e So what? An attacker knows that | used libc...

* An example in the wild from RSA encryption/decryption h€ mod n where

e IS secret!

x «—| = |
. »
for i < ¢/-1 downto 0 do 5 a0 | S 4

¥ «—x> mod n =3 ; S

' ' S 300 + |

if(() = l) then g ".‘2..00.....“0 00 299070040009y ‘.’... T12 20T Y
| — 200 } N |

X = '\.b mOd L % ! Threshold
endif Ry TR SR SO b S s el i .1
O 2) | | 1 s 2) | 1
done M 0 5 10 15 20 25 30 35 40 45 50
| return x Time Slot Number

" courtesy: USENIX Security ‘14

Flush + Reload

 Shared libraries/software can be accessed by any processor
* Open-source software is out there to be analyzed
 Data dependent behavior can dictate the cache state/access times

e Spies can infer precise values from hits and misses to shared data

11

Flush + Reload: Chat with your neighbors!

* |s this vulnerability dependent on the cache?

* |f we care about privacy, are we totally screwed?

Flush + Reload

 Dependent on clflush operation (10 points to RISC-V!)
 Dependent on very precise timers (nano seconds granularity!)

 What if the ISA/hardware didn’t allow for such precise timing?

13

Prime + Probe

e Not so fast...

 \We may not be able to time individual accesses, but we can measure the
Impact of misses due to cache contention

‘shared cache

Prime + Probe

| can determine the amount of
cache contention by counting
how many blocks | can access
In some amount of time

100 ms 100 ms 100 ms

15

Prime + Probe

 Wait, but this is information is much less precise... how would a spy use that
information?

 These attacks are generally used for leaking bigger picture information like
website fingerprinting

16

Architecture Mitigations

 How can we defend against these attacks”? We need to understand what
enables these attacks!

 Shared libraries can be an avenue for leaking information via Flush + Reload
attacks

e Certain instructions make these attacks possible

 Shared hardware allows attackers to flush/probe your data

17

Architecture Mitigations

* Oblivious RAM: remove correlation between behavior and impact on
architectural state

* |.e., scan all of memory for every operation

* Jrusted Execution: isolate the sensitive process in a specialized region of
hardware

e |.e., Intel SGX, ARM TrustZone, RISC-V Keystone, etc.

» Cache partitioning: each processor gets assigned to a region in each shared
cache and can only access its region

18

Oblivious RAM

* Hide information by removing correlation between observations and inference
* Often done at the algorithmic level (not really an architecture)

* \ery theoretical

19

Trusted Execution

» Often very architecture dependent on what the specs are and what the
guarantees are

o Separate caches for isolation, separate register state, etc...
e Often very slow!

* Subject to any underlying architecture vulnerabilities!

20

Cache Partitioning

 Provides isolation in the cache, which eliminates shared access
* | eads to inefficient use of the cache... fragmentation!

 Research into scalable cache partitions, but even these leak data!

21

Still to come!

o Spectre/Meltdown attacks
e Rowhammer attacks

e HertzBleed

 Bus Leakage

22

Concluding Thoughts

* You don’t have to be scared about what is in your cache state, but you should
be aware of what’s in your cache state

 These vulnerabilities are born out of powerful, smart optimizations! But
performance benefits aren’t always for free...

* Working on mitigating these vulnerabilities well is an active ongoing effort!

* So should | just give up and use an abacus?

23

