Hardware Capabilities



“Software uses hardware, so...”

THE WHITE HOUSE

Joe Biden!

FEBRUARY 26, 2024

Statements of Support fo
Measurability and Memory Satety

EfIT » ONCD » BRIEFING ROOM » PRESS RELEASE

Read the full report here

Read the fact sheet here

We d O n ,t n eed to WO rry Today, the Office of the National Cyber Director released a new Technical

Report titled “Back to the Building Blocks: A Path Toward Secure and

b h I ) Measurable Software.” This report builds upon the President’s National
a O Ut t I S ) We re Cybersecurity Strategy, addressing the technical community to tackle
architects! Right..?



“Software uses hardware, so...”

int foo(int argl, int argd) {

int buffer[argl|;

for (inti=0; i < arg; i++) | 0XDANGER

buffer[i] =/* something */;
)

return O;

)

Buffer




“Software uses hardware, so...”

 Hardware doesn’t know about data types...

 What if we just had one extra bit per data word...

Hey processor! This
data is a pointer,

don’t do dangerous
stuff to it!

CPU




“Software uses hardware, so...”

 We can arrange these extra bits in a table!
* Any time we access memory, we’ll also fetch these extra bits

e \WWe can even cache them!

| already have so many
tables, and so many
caches to protect these
tables... CPU




Remember page tables?

 Each process gets a table of virtual addresses that it can access
 Each entry maps to a physical address

 The TLB is used to cache page table entries

Hey processor! The
“process”

abstraction isn’t all
that great!




“Software uses hardware, so...”

* \We want better hardware abstractions to implement security primitives

 [ag “data references” to say that they are a capability, now you have
security!

 Change the purpose/role of the MMU (memory management unit: TLB, etc.)
to better suit control flow



Capabilities!

virtual memory

padding (32 bits) permissions (31 bits)

length (64 bits)

offset (64 bits) N
base (64 bits)

256 bits




Chat with your neighbor!

int foo(int argl, int argd) {
int buffer[argl];

for (inti=0; i < arg; i++) | 0XDANGER

buffer[i] =/* something */;
)

return O;

)

Buffer




Capability Hardware

Ca Fmbiii?:v

Enabled

Taq Table




Capability Processors

yoje
Jsu|

Bl

Execute X '\Az::nec;g
; f

| Put capability Exchange Get Commit |
Instruction Operands Address Writeback
Offset J
Address
Request Read Speculative Write Write
Forwarding Register File
. Capability Coprocessor )

Figure 2: BERI pipeline with capability coprocessor



Capability Processors

Fetch Execute Commit
Fetch 1 »IQ> FPU HE|l> [ ,ICommit
/ ©
TLB " = |,
mEl |8
Fetch 2 n Lo 5
QR ALU  Hi- (3@
E Il IFNE
I 2
Fetch 3 i~ 5
T, | |
>|Q> MEM >
Decode
vy A
\A 4 D $
Rename

TOOOBA pipeline, without capabilities



Capability Hardware

| use physical addresses

Last Level Cache for data and the tags!

Tag
Manager

Main Memory




Chat with your neighbor!

 Why is it important to maintain a tag?
 Why is it difficult for a tag manager to verify a capabillity at a virtual address”?

 What is difficult about using physical addresses in the tag manager?



The Capability Address Space

e No virtual addresses... how to do isolation?
e Use capabillities!

* Virtual memory == process specific memory

Physical Memory

0x00

max



The Capability-Centric Process

A process is just a set of objects that are strictly defined:

Process registers
Code to execute
Global memory space
Stack address space
Heap address space

o~ Wb =

e | et’s define each of these as capabilities!



The Capability Centric Process

it

pointer

Heap

— o an e— g L
Explici

Memory

».
/
Globals

\
'
'
r

’

J
s
’
4
’
‘

'\
\
L]
'
’

'’

!
’
s,
4

\.-~--------------.-------->

-~
\
!

Stack
‘\:‘b“a

Code
captable

\‘
- -
....................

Thread
register
file
PCC
GPRs
DDC




Chat with your neighbor!

 What are some pros and cons of enforcing isolation with virtual memory
versus capabilities?



The Capability Nanokernel

 What is a nanokernel? A less functional microkernel (which is a less functional
kernel)

* The absolute bare minimum OS!
 The job of the nanokernel is to create a process

e How does it do this...?



Putting 1t all together...

* |n order to have hardware enforced pointers, the authors of the capabilities
framework suggest:

 Hardware-awareness of data format
* |n-memory and cache-assisted tables to identify data formats
* New OS semantics and paradigms for memory isolation and processes

 Bug-free use of the ABI!



Capabilities Today

CHERI

Capability Hardware Enhanced RISC Instructions (CHERI)

PIs: Robert N. M. Watson (University of Cambridge), Simon W. Moore (University of Cambridge), Peter Sewell (University of
Cambridge), Brooks Davis (SRI International), and Peter Neumann (SRI International)

September 2023: We have posted CHERI ISAv9, which replaces CHERI-MIPS with CHERI- Y
RISC-V as our primary reference architecture, CHERI-MIPS is removed, merged register files .
are always used, tags are cleared in preference to exception throwing for non-monotonic
capability modification, and DDC/PCC no longer relocate memory accesses by default. CHERI-
RISC-V is substantially refined in preparation for standardisation. The CHERI-x86 sketch is now
substantially more detailed.

January 2022: Arm has shipped its CHERI-enabled Morello prototype processor, SoC, and
board! Read blog posts about this at Arm and Microsoft, and our own thoughts at
Cambridge.

September 2019: Learn about the CHERI architecture! Our technical report An Introduction to CHERI is a high-level summary of our work on
CHERI architecture, microarchitecture, formal modeling, and software.

CHERI (Capability Hardware Enhanced RISC Instructions) is a joint research project of SRI International and the University of Cambridge to
revisit fundamental design choices in hardware and software to dramatically improve system security. CHERI has been supported by the DARPA
CRASH, MRC, and SSITH programs since 2010, as well as other DARPA research and transition funding. Since 2019, development of Arm's



