
Gem5 Gear-Up Session



● Overview of gem5 (what is it? why are we using it?)

● Understanding the front-end

● Understanding the back-end

● Debugging in gem5

● PS: if you are working outside the docker container and haven’t compiled gem5 

yet, please pull the repo and do that now!

Outline



A Note Before We Start…



The Sales Pitch

“The gem5 simulator provides a flexible, modular simulation system that is 
capable of evaluating a broad range of systems and is widely available to all 
researchers. This infrastructure provides flexibility by offering a diverse set of CPU 
models, system execution modes, and memory system models. A commitment to 
modularity and clean interfaces allows researchers to focus on a particular aspect 
of code without understanding the entire code base.”



The Good

● Run real programs!

● Custom architecture configurations!

● Different CPU properties!

● Different memory hierarchies!

● Custom devices!

● Easily run different ISAs!



The Bad

● 10887 unique files; 1.2 million lines of code(!)

● Debugging can be tricky…

● Please don’t try to understand everything



Workflow

● Compile gem5 with scons (you can skip through the warnings)

● Whenever you update the back-end, you need to recompile

● If you update the front-end, you don’t need to recompile



Workflow (expected output)



Let’s jump into the code!

The slides will have relevant screenshots to refer back to.



Front-End

● Gem5 uses a Python front end 
to declare which components 
you want to use in the 
simulation

● Primarily in configs/… directory
● Components are connected 

via ports by declaring 
obj1.port_name = 
obj2.port_name (ordering 
doesn’t matter) 



Front-End

● CPU Models
○ <ISA>TimingSimpleCPU: single-cycle processor
○ <ISA>MinorCPU: 4-stage pipelined processor (we will explore this processor in depth in HW5)
○ <ISA>O3CPU: pipelined, out-of-order (O3) processor

● Memory Models
○ Atomic: useful for checkpoints (will only be relevant for final project, maybe)
○ Functional: used in the simulator boot to preset values relevant for the simulation (i.e., putting 

the instructions from the binary in memory)
○ Timing: the accurate memory mode for counting stats during the simulation

● Simulation Modes
○ Syscall Emulation (SE): system calls are emulated in the simulator

(doesn’t model the OS)
○ Full System (FS): disk image (file system, system binaries, etc.), OS are 

passed as input to the simulations (i.e., customizable)



Front-End (a note about binaries)

● If you want to install cross compile for RISC-V (optional): 

https://github.com/riscv-collab/riscv-gnu-toolchain 

● All programs that you will need will be included in the stencil repo

https://github.com/riscv-collab/riscv-gnu-toolchain


Back End

● Mostly C++ in the back end (everything that you will do in this class will be in 

C++)

● After updating C++, recompile by calling scons build/RISCV/gem5.debug

● This step takes forever, prints lots of output, and it’s super memory intensive… 

don’t worry all of this is normal (413MB binary)



Back End



Back End

● Information sent between simulated devices as “packets”
○ We will try to make sure all of the relevant packet functions are in the assignment handout for 

each assignment
● Packets are communicated via ports, which act as the starting/stopping point 

for the logic of each device



Back End

● Gem5 is an event-based simulator to model timing

● There is an “EventQueue” object where all routines are enqueued with a 

lambda function and a cycle time to execute the lambda function
○ The EventQueue pops each routine and uses the scheduled execution time to “advance time”



Back End (clean compilation)



Back End (compilation error)



Debugging (incorrect outputs)



Debugging Event-Based Program



Debugging (Incorrect outputs)



Debugging (crash)



Debugging (simulation hangs)

1

1. Set a breakpoint at the 
beginning of receiving a 
packet

2. Ignore the breakpoint n 
times for a big n

3. Wait until you think the 
program should have 
finished or is hanging, 
then user interrupt

4. See how many times the 
breakpoint has been hit 
(t), and ignore it t - 1 
times before running 
again (so you hit the last 
iteration through)

2

3

4


