
Caches: Coherence,
Synchronization, Consistency

1

Outline for Today

• Revisit the cache hierarchy

• Describing snooping coherence protocol

• Implementing fences in hardware

• Highlighting relaxed memory models

2

3

CPU

Data $Inst $

L2 Cache

L3 Cache

2 cycles

10 cycles

20 cycles

10s of kB

100s of kB

1s of MB

4

CPU

L2 Cache

CPU

Data $Inst $

L2 Cache

Inst $ Data $

(shared) L3 Cache

Chat with your neighbor!

• What about this cache hierarchy works?

• What about this cache hierarchy doesn’t work?

5

6

CPU

Data $Inst $

L2 Cache

(shared) L3 Cache

CPU

Data $Inst $

L2 Cache

addi x10 x0 10

sw x10 0(x11)

x11:
0x1000

addi x10 x0 20

sw x10 0(x11)

x11:
0x1000

0x1000: 0

7

CPU

Data $Inst $

L2 Cache

(shared) L3 Cache

CPU

Data $Inst $

L2 Cache

addi x10 x0 10

sw x10 0(x11)

x11:
0x1000

addi x10 x0 20

sw x10 0(x11)

x11:
0x1000

0x1000: 0

write to
0x1000

miss

read 0x1000

write to
0x1000

miss

read 0x1000

8

CPU

Data $Inst $

L2 Cache

(shared) L3 Cache

CPU

Data $Inst $

L2 Cache

addi x10 x0 10

sw x10 0(x11)

x11:
0x1000

addi x10 x0 20

sw x10 0(x11)

x11:
0x1000

0x1000: 0

write to
0x1000

0

10

write to
0x1000

0

20

9

CPU

Data $Inst $

L2 Cache

(shared) L3 Cache

CPU

Data $Inst $

L2 Cache

addi x10 x0 10

sw x10 0(x11)

x11:
0x1000

addi x10 x0 20

sw x10 0(x11)

x11:
0x1000

0x1000: 0

write to
0x1000

0

10

write to
0x1000

0

20What should the data be at
address 0x1000???

Definitions

• Coherence: what value should be returned by a read?

• Synchronization: how can software reason about the state of data?

• Consistency: in what order can memory operations occur?

10

Snooping Coherence

11

0x1000 0x1000

Cache A Cache B

shared bus

0x1000

Snooping Coherence

12

0x1000 0x1000

Cache A Cache B

shared bus

0x1000

invalidate
0x1000

Snooping Coherence

13

0x1000 0x1000

Cache A Cache B

shared bus

0x1000

invalidate
0x1000

Snooping Coherence

14

0x1000 0x1000

Cache A Cache B

shared bus

0x1000

invalidate
0x1000

Read 0x1000

miss!

Snooping Coherence

15

0x1000 0x1000

Cache A Cache B

shared bus

0x1000 0x1000

Snooping Coherence

16

0x1000 0x1000

Cache A Cache B

shared bus

invalidate
0x1000

0x1000 0x1000

invalidate
0x1000

Snooping Coherence

17

0x1000 0x1000

Cache A Cache B

shared bus

invalidate
0x1000

0x1000 0x1000

invalidate
0x1000

What should the value
of 0x1000 be???

Snooping Caches

18

0x1000 0x1000

Cache A Cache B

shared bus

invalidate
0x1000

0x1000

Owner
A

Memory (super slow!)

Snooping Caches

19

0x1000 0x1000

Cache A Cache B

shared bus

invalidate
0x1000

0x1000

Owner
A

Memory (super slow!)

Snooping Caches

20

0x1000 0x1000

Cache A Cache B

shared bus

0x1000

Owner
AB

miss!

read
0x1000

Memory (super slow!)

Snooping Caches

21

0x1000 0x1000

Cache A Cache B

shared bus

0x1000

Owner
AB

0x1000

Memory (super slow!)

Snooping Coherence

• Scheme is called write-invalidate

• The consistency model from this scheme is called write serialization

• “Snoops” are messages across the shared bus

22

Snooping Coherence (from CPU)

23

read hit

read miss

write miss

modified shared invalid

write hit

read data in local
cache

read data in local
cache n/a

place read miss on
bus; replace data;
writeback on bus

place read miss on
bus; replace data

place read miss on
bus

write data in local
cache n/a

place invalidate on
bus; transition to

modified state

place write miss on
bus

place write miss on
bus

writeback block;
place write miss on

bus

Snooping Coherence (from bus)

24

modified shared invalid

read miss (snoop)

invalidate

write miss (snoop)

read data and place
on bus; writeback
data; change to

shared state

allow shared cache
or memory to
service miss

n/a

n/an/a change to invalid
state

n/a

abort other memory
operation;

writeback data;
change to invalid

state

change to invalid
state

Snooping Coherence

25 https://en.wikipedia.org/wiki/MSI_protocol#State_Machine

Snooping Coherence

• Protocol called MSI (Modified, Shared, Invalid)

• Less bus traffic in MESI (Modified, Exclusive, Shared, Invalid) protocol

• Even less bus traffic in MOESI (Modified, Owned, Exclusive, Shared, Invalid)
protocol

26

Chat with your neighbor!

• What are the advantages of snooping?

• What are the disadvantages of snooping?

• How would you describe the consistency model of snooping coherence?

27

Coherence, Synchronization, Consistency

• We have a protocol to maintain multiple copies of data coherently

• We have described how to use coherence to implement write serialization

• We do not have a way for the processor to use the memory hierarchy to
implement synchronization features (fences, atomic ops, etc.)

• We do not have any other way to reason about consistency in the memory
hierarchy

28

Synchronization: Fences

sw x0, 0(x10) # dcache miss, l2 miss, l3 hit

sw x0, 0(x11) # dcache hit

sw x0, 0(x12) # dcache miss, l2 hit

29

If we use coherence for
consistency, in what order are

these operations going to
appear in memory?

Synchronization: Fences

sw x0, 0(x10) # cache miss, l2 miss, l3 hit

sw x0, 0(x11) # dcache hit

FENCE

sw x0, 0(x12) # dcache miss, l2 hit

30

Ensures that all memory
operations before the fence
happen before the memory
operations after the fence

memory hierarchy

Synchronization: Fences

31

store buffer

0x100000

0x200000

0x300000

0x400000

bus

0x100000 0x100000

0x200000 0x300000

0x400000 0x400000

FENCE

0 1
0

Synchronization

• We can leverage protocols in the memory hierarchy to expose high-level
programming semantics to the application

• Fences

• Conditional operations

• Atomic operations

• Increment operations

• etc…

32

Synchronization: Fences (Summary)

• Memory operations can appear out of order in the cache hierarchy due to the
cache state (e.g., miss then hit, etc.)

• Fences are instructions (software) that provide order to memory operations
(hardware)

• We can use coherence with the store buffer to implement fences! Not how it’s
done in gem5…

33

Memory Consistency

• Programs may not be written with the most efficient memory ordering…

• What if the hardware could just finish operations whenever they were ready?

• Software could do all coordination (i.e., fences everywhere its needed, etc.)

• May this is a bit extreme…

• Relax consistency defines different ways in which hardware will re-order operations!

• Software developers will write architecture specific applications based on
consistency models

34

Memory Consistency

• Operations: R->W, R->R, W->R, W->W

• What if we allow some of these orderings to occur out of order?

• Total store order (TSO): W->R may appear as R->W

• Partial store order (PSO): TSO and W1->W2 may appear W2->W1

• Weak ordering: all operations may appear in any order

35

Memory Consistency

36

Summary

• We covered the cache hierarchy for multiprocessors

• We defined coherence

• We described snooping, and built a snooping-based coherence protocol

• We used fences as a case study for how the processor and memory hierarchy
allows software to implement synchronization

• We defined different memory consistency models, which allow for varying
degrees of reordering

37

