
Caches: Coherence, 
Synchronization, Consistency
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Outline for Today

• Revisit the cache hierarchy


• Describing snooping coherence protocol


• Implementing fences in hardware


• Highlighting relaxed memory models
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Chat with your neighbor!

• What about this cache hierarchy works?

• What about this cache hierarchy doesn’t work?
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Definitions

• Coherence: what value should be returned by a read?


• Synchronization: how can software reason about the state of data?


• Consistency: in what order can memory operations occur?
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Snooping Coherence
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Snooping Coherence
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Snooping Coherence
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Snooping Coherence
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Snooping Coherence
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Snooping Coherence
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Snooping Coherence
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Snooping Caches
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Snooping Caches
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Snooping Caches
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Snooping Caches
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Snooping Coherence

• Scheme is called write-invalidate


• The consistency model from this scheme is called write serialization


• “Snoops” are messages across the shared bus
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Snooping Coherence (from CPU)
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Snooping Coherence (from bus)
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Snooping Coherence
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Snooping Coherence

• Protocol called MSI (Modified, Shared, Invalid)


• Less bus traffic in MESI (Modified, Exclusive, Shared, Invalid) protocol


• Even less bus traffic in MOESI (Modified, Owned, Exclusive, Shared, Invalid) 
protocol

26



Chat with your neighbor!

• What are the advantages of snooping?


• What are the disadvantages of snooping?


• How would you describe the consistency model of snooping coherence?
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Coherence, Synchronization, Consistency

• We have a protocol to maintain multiple copies of data coherently


• We have described how to use coherence to implement write serialization


• We do not have a way for the processor to use the memory hierarchy to 
implement synchronization features (fences, atomic ops, etc.)


• We do not have any other way to reason about consistency in the memory 
hierarchy
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Synchronization: Fences

sw x0, 0(x10) # dcache miss, l2 miss, l3 hit


sw x0, 0(x11) # dcache hit


sw x0, 0(x12) # dcache miss, l2 hit
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If we use coherence for 
consistency, in what order are 

these operations going to 
appear in memory?



Synchronization: Fences

sw x0, 0(x10) # cache miss, l2 miss, l3 hit


sw x0, 0(x11) # dcache hit


FENCE


sw x0, 0(x12) # dcache miss, l2 hit
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Ensures that all memory 
operations before the fence 
happen before the memory 
operations after the fence



memory hierarchy

Synchronization: Fences
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Synchronization

• We can leverage protocols in the memory hierarchy to expose high-level 
programming semantics to the application


• Fences


• Conditional operations


• Atomic operations


• Increment operations


• etc…
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Synchronization: Fences (Summary)

• Memory operations can appear out of order in the cache hierarchy due to the 
cache state (e.g., miss then hit, etc.)


• Fences are instructions (software) that provide order to memory operations 
(hardware)


• We can use coherence with the store buffer to implement fences! Not how it’s 
done in gem5…
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Memory Consistency

• Programs may not be written with the most efficient memory ordering…


• What if the hardware could just finish operations whenever they were ready?


• Software could do all coordination (i.e., fences everywhere its needed, etc.)


• May this is a bit extreme…


• Relax consistency defines different ways in which hardware will re-order operations!


• Software developers will write architecture specific applications based on 
consistency models
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Memory Consistency

• Operations: R->W, R->R, W->R, W->W


• What if we allow some of these orderings to occur out of order?


• Total store order (TSO): W->R may appear as R->W


• Partial store order (PSO): TSO and W1->W2 may appear W2->W1


• Weak ordering: all operations may appear in any order
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Memory Consistency
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Summary

• We covered the cache hierarchy for multiprocessors


• We defined coherence


• We described snooping, and built a snooping-based coherence protocol


• We used fences as a case study for how the processor and memory hierarchy 
allows software to implement synchronization


• We defined different memory consistency models, which allow for varying 
degrees of reordering
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