Execution on GPUs

oooooo

e O e e & e



GPU overxview

Programmer

Writes one program to run on
many, many threads (SPMD)

Chooses block size, # threads
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Hardware

Schedules each block to a
Streaming Multiprocessor

Threads inside blocks are split
up into warps to enable
lockstep execution (SIMT)
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A note about nVidia

They're not paying me

These slides use nVidia/CUDA terminology for

practicality (matches dominant platform) T T e ——
See H&P Fig. 4.25 for translations to their terms
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https://www.techpowerup.com/329822/jpr-q324-pc-graphics-aib-shipments-decreased-14-5-compared-to-the-last-quarter
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CUDA programming model

API for programming nVidia GPUs at the thread level

Allows for specifying host (CPU) code (to set up
threads) + device (GPU) code (parallel kernel)

Host and device have separate memories

Note: this is not a graphics course, and not a
GPU programming course (also GPUs are
being used, developed, and marketed for more
than graphics)

We're studying the details of highly parallel
architectures that use the SPMD programming
model
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#heterogeneous-programming

nVidia PTX ISA

PTX = parallel thread execution
Full summary in P&H fig. B.4.3, documentation here
Suffixes may define operand data type, memory space

Arithmetic: add, sub, mul, etc Why isn’t it a “true” ISA?

Special function: sqrt, sin, cos, etc e Actual machine instructions
. are proprietary/may differ
Logical: and, or, xor, etc by device - device has to

translate PTX to its own
instructions
Control: branch, call, ret, sync, exit e Virtual registers

Memory: Id, st, tex (texture lookup), atom


https://docs.nvidia.com/cuda/parallel-thread-execution/#instructions
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CSR multiplication in CUDA

__host__

// set up matrix in CSR format here:

// 8 blocks, 256 threads per block to do multiplication
csrMult<<<8, 256>>>(2048, Rp, C, V, X, Vy);

// GPU side
__device_ _
void csrMult(int n, intx Rp, intx C, floatx V, float* x, floatx y) {

int r = blockIdx.x * blockDim.x + threadIdx.x; INste

if (r <n) § 9q of
int rBeg = R : o Dro‘,,-ded/o% Use
int rBeg = Rpl[zx]; er‘threo VinQb/ th@Se
int rSize = Rp[r + 1] - Rp[r]; fordod"Coo,dl.eSOs
y[r] = multRow(xSize, C + rBeg, V + rBeg, x); tOOCCesQQteS”



What do we need to watch out for when
programming using CUDA?



Hardware-awaxe SPMD

SPMD promises us the power of writing scalar programs and running
them with high parallelism

It's (relatively) easy to write a SPMD program that runs, BUT:



Kernel execution

int r = blockIdx.x * blockDim.x + threadIdx.x;
if (r < n) {
int rBeg = Rp[x];
int rSize = Rp[r + 1] - Rpl[r];
y[r] = multRow(xSize, C + rBeg, V + rBeg, x);
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Active threads

if (threadIdx.x < 4) {
Aj
B;
} else {
X3
Y;
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How to keep track of which threads are active? <‘

image source
< How to keep track of when to reconverge?



https://web.archive.org/web/20241102165838/https://developer.nvidia.com/blog/inside-volta/

Use single PC and keep
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C;

Execution mask & loops

float multRow(int rSize, intx Cr, s s s
floatx Vr, float* x) 3 [ (rsize = 3) ][ (rsize = 0) ][ (rSize = 1) ]
float sum = 0O; b h -
for (int 1 = 0; i < rSize; i++) 3

sum += Vr[i] * x[Cx[i]];

§

return sum;

h each iteration
computes branch

Q0010

reconverge!




Where might execution mask usage become
complicated?






Allows switching between / <
execution paths

nVidia Volta -how?
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https://web.archive.org/web/20241102165838/https://developer.nvidia.com/blog/inside-volta/
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FP16 or FP32 FP16 or FP32
An accelerator on the accelerator
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Circuits on GPUs optimized for Al
(matrix operation D = A*B + C)
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generation) performance gains
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https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

Sparse acceleration

Sparse Tensor
Core

Input activations
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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GA100 SM in Ampere

PCI Express 40 Host Interface.
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

GPU memory

Local memory for tk
state

Shared memory to
communicate across

threads
How?

__shared__ bool isDone;

if (threadIdx.x == 0)

if (ecc) isDone = true;

__syncthreads();
if (isDone) 3%

£

model

Resides in device
memory, not on

chip.. why?

Shared Memory <«
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also constant
64 KB

Per thread registers and
local memory

Thread Block

Per block Shared memory

48-227KB
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Thread Block Cluster

Thread Block

Thread Block Shared memory of all

I Shared Memory

thread blocks in a cluster

EhalCdIMEOny I'* form Distributed Shared

Memory
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also L2 $ (6-96 MB)

Global Memory shared
between all GPU kernels


https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy

