Execution on GPUs

oooooo

e O e e & e

GPU overxview

Programmer

Writes one program to run on
many, many threads (SPMD)

Chooses block size, # threads

Thread Block Thr

Ay

Thread Block Tl

Hardware

Schedules each block to a
Streaming Multiprocessor

Threads inside blocks are split
up into warps to enable
lockstep execution (SIMT)

Pre 3ssor4 1> :essurA
IEMQ——NMM s | SFU Eﬂmw——umn SSSSSSS
[| s =1 | || s =]
e | || | e

o —— E‘l
T

= ey | T == ey
sro| e izl [i =]
L [ommmee (e]

A note about nVidia

They're not paying me

These slides use nVidia/CUDA terminology for

practicality (matches dominant platform) T T e ——
See H&P Fig. 4.25 for translations to their terms
100% 15
Ond OpenCL 90% 82% 88% 90% 15
80% 15
70% va
. 60%
Is this good for the 20% 14
consumer/society? I'm not an 30% =
. r 20% 0
economist but I'm happy to hear 10% ey o
your tqkes Q3'23 Q224 Q324

source

m AMD Intel

https://www.techpowerup.com/329822/jpr-q324-pc-graphics-aib-shipments-decreased-14-5-compared-to-the-last-quarter

®

source

CUDA programming model

API for programming nVidia GPUs at the thread level

Allows for specifying host (CPU) code (to set up
threads) + device (GPU) code (parallel kernel)

Host and device have separate memories

Note: this is not a graphics course, and not a
GPU programming course (also GPUs are
being used, developed, and marketed for more
than graphics)

We're studying the details of highly parallel
architectures that use the SPMD programming
model

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel0<<<>>>()

Serial code

Parallel kernel
Kernell<<<>>>()

=

Device
Grid 0

Block (0,0) Block
5 55

(1,0) Block (2, 0)

xxxxxx

))))))

Block (0,1) Block

Host
Device
Grid 1
Block (0, 0)
Block (0, 1)
Block (0, 2)

- |

sissaisss :’u""w

(1,1) Block(2 1)

o
i
—
S

= =
2%&

- |

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#heterogeneous-programming

nVidia PTX ISA

PTX = parallel thread execution
Full summary in P&H fig. B.4.3, documentation here
Suffixes may define operand data type, memory space

Arithmetic: add, sub, mul, etc Why isn’t it a “true” ISA?

Special function: sqrt, sin, cos, etc e Actual machine instructions
. are proprietary/may differ
Logical: and, or, xor, etc by device - device has to

translate PTX to its own
instructions
Control: branch, call, ret, sync, exit e Virtual registers

Memory: Id, st, tex (texture lookup), atom

https://docs.nvidia.com/cuda/parallel-thread-execution/#instructions

®

CSR multiplication in CUDA

__host__

// set up matrix in CSR format here:

// 8 blocks, 256 threads per block to do multiplication
csrMult<<<8, 256>>>(2048, Rp, C, V, X, Vy);

// GPU side
__device_ _
void csrMult(int n, intx Rp, intx C, floatx V, float* x, floatx y) {

int r = blockIdx.x * blockDim.x + threadIdx.x; INste

if (r <n) § 9q of
int rBeg = R : o Dro‘,,-ded/o% Use
int rBeg = Rpl[zx]; er‘threo VinQb/ th@Se
int rSize = Rp[r + 1] - Rp[r]; fordod"Coo,dl.eSOs
y[r] = multRow(xSize, C + rBeg, V + rBeg, x); tOOCCesQQteS”

What do we need to watch out for when
programming using CUDA?

Hardware-awaxe SPMD

SPMD promises us the power of writing scalar programs and running
them with high parallelism

It's (relatively) easy to write a SPMD program that runs, BUT:

Kernel execution

int r = blockIdx.x * blockDim.x + threadIdx.x;
if (r < n) {
int rBeg = Rp[x];
int rSize = Rp[r + 1] - Rpl[r];
y[r] = multRow(xSize, C + rBeg, V + rBeg, x);

B A N

Cyckal muit

Cyclezmr What ocd NCECIN
cycies IREETEN hoppens SOEN branch
ﬁr>—n°' I
d ood | ada ocd U
j_sub | sub L sub

Active threads

if (threadIdx.x < 4) {
Aj
B;
} else {
X3
Y;

)
on
—
)
>
=
®)
O
)
(s

N -

How to keep track of which threads are active? <‘

image source
< How to keep track of when to reconverge?

https://web.archive.org/web/20241102165838/https://developer.nvidia.com/blog/inside-volta/

Use single PC and keep

EXGCUt iOI‘I maSk track of which threads

are using that PC

0
1]]
] 0] oA
0 on
1 0] E]
1 |] é]
| | D Sk
] } 0 OF
1 0]
Pfebdicotﬁ . I ¢ K Restore old ’ Time
non-branching nvert mas e

instructions on branch

C;

Execution mask & loops

float multRow(int rSize, intx Cr, s s s
floatx Vr, float* x) 3 [(rsize = 3)][(rsize = 0)][(rSize = 1)]
float sum = 0O; b h -
for (int 1 = 0; i < rSize; i++) 3

sum += Vr[i] * x[Cx[i]];

§

return sum;

h each iteration
computes branch

Q0010

reconverge!

Where might execution mask usage become
complicated?

Allows switching between / <
execution paths

nVidia Volta -how?

f (th drd) { . A =
il threadidx.x < 4

canier (NN AN NAR AR AANARRRNNY

} else {
X;
and Stack (S)

Y;

N “~

» Time

Pre-Volta

32 thread warp Volta

NUNUMMMnMumnNnUuNnnunumMmM N nNnnnnnnumunm N nnun nun nom

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

LQLOLOLOLOLLOLOLLDLOLOLLOLODOLDOLOLOLOLLOLOLO UUUUUUUU
Convergence i WY WY o VY VY o WY o WY Y VR o VY n WY Y VO VY Y Y m Y A Y WY Y Y Y T VY o Y WY VY VY Y WY o

Optimizer

| \\\ ||| » HCgesodrce 32 thread warp with independent scheduling

O)

https://web.archive.org/web/20241102165838/https://developer.nvidia.com/blog/inside-volta/

Image source

D=
Tensoxr cores
FP16 or FP32 FP16 or FP32
An accelerator on the accelerator
(See OISO qu TrGCing COreS) PASCAL TURING TENSOR CORE TURING TENSOR CORE TURING TENSOR CORE

FP16 INT 8 INT 4

Circuits on GPUs optimized for Al
(matrix operation D = A*B + C)

H
B
Uses mixed-precision to speed up «sis=ee
math, reduce memory demands

2SS AAY

AS

Claim huge (8x-32x per
generation) performance gains
over SM matrix multiply

=
£
"
L
L
"
L3
L
3
o
o
<
<
o
o
,f‘
T
z
z
Z
Z
Z
Z
z
z
z
z
v

image source

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

Sparse acceleration

Sparse Tensor
Core

Input activations

Select

=

> -

source

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

Dense trained Non-zero ices Output activations
weights *ﬁ' data values
Fine-tune weights Fine-tuned sparse and

compressed weights

NN .
A\

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

source

GA100 SM in Ampere

PCI Express 40 Host Interface.

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32FP32 FPe4
FP32 FP32 FPo4
FP32FP32 FPe4

FP32 FP32 FP64

TENSOR CORE

FP32FP32 FP64
;z ﬁ; FP64
FP32FP32 FP64
FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

SFU

" WarpScheduler (32threadiclk) |
Dispatch Unit (32 thread/cik)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
TENSOR CORE
INT32 INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
sT ST ST ST ST ST ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

Warp Scheduler (32 felk).

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32FP32 FPe4
FP32 Fpaz‘ FP64
FP32FP32 FPe4
FP32FP32 FPe4
FP32 FPSZ‘ FP64
FP32FP32 FPe4
PR Fros

FP32 FP32 FPo4

LD/ LD/ LD/ LD/ LD/ LD/
ST | ST ST | ST ST | ST

TENSOR CORE

SFU

| duler (32 th 1K) |

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
TENSOR CORE
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64

LB RED/IS MERZS REDIN BEDAS RETNE BEDSY MED SFU
ST ST ST ST ST ST ST ST

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

GPU memory

Local memory for tk
state

Shared memory to
communicate across

threads
How?

__shared__ bool isDone;

if (threadIdx.x == 0)

if (ecc) isDone = true;

__syncthreads();
if (isDone) 3%

£

model

Resides in device
memory, not on

chip.. why?

Shared Memory <«

HH

®

Image source

also constant
64 KB

Per thread registers and
local memory

Thread Block

Per block Shared memory

48-227KB

memor

Thread Block Cluster

Thread Block

Thread Block Shared memory of all

I Shared Memory

thread blocks in a cluster

EhalCdIMEOny I'* form Distributed Shared

Memory

Thread Block Cluster

Grid with Clusters

Thread Block Cluster

Thread Block

Thread Block

Thread Block Thread Block

I Shared Memory

Shared Memory I

I Shared Memory Shared Memory |

also L2 $ (6-96 MB)

Global Memory shared
between all GPU kernels

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy

