
Execution on GPUs

Programmer

Writes one program to run on
many, many threads (SPMD)

Chooses block size, # threads

GPU overview
Hardware

Schedules each block to a
Streaming Multiprocessor

Threads inside blocks are split
up into warps to enable
lockstep execution (SIMT)

They’re not paying me

These slides use nVidia/CUDA terminology for
practicality (matches dominant platform)

See H&P Fig. 4.25 for translations to their terms
and OpenCL

A note about nVidia

source

Is this good for the
consumer/society? I’m not an

economist but I’m happy to hear
your takes

https://www.techpowerup.com/329822/jpr-q324-pc-graphics-aib-shipments-decreased-14-5-compared-to-the-last-quarter

CUDA programming model
API for programming nVidia GPUs at the thread level

Allows for specifying host (CPU) code (to set up
threads) + device (GPU) code (parallel kernel)

Host and device have separate memories

source

Note: this is not a graphics course, and not a
GPU programming course (also GPUs are

being used, developed, and marketed for more
than graphics)

We’re studying the details of highly parallel
architectures that use the SPMD programming

model

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#heterogeneous-programming

nVidia PTX ISA
PTX = parallel thread execution

Full summary in P&H fig. B.4.3, documentation here

Suffixes may define operand data type, memory space

Arithmetic: add, sub, mul, etc

Special function: sqrt, sin, cos, etc

Logical: and, or, xor, etc

Memory: ld, st, tex (texture lookup), atom

Control: branch, call, ret, sync, exit

Why isn’t it a “true” ISA?
● Actual machine instructions

are proprietary/may differ
by device – device has to
translate PTX to its own
instructions

● Virtual registers

https://docs.nvidia.com/cuda/parallel-thread-execution/#instructions

__host__
// set up matrix in CSR format here: ...
// 8 blocks, 256 threads per block to do multiplication
csrMult<<<8, 256>>>(2048, Rp, C, V, x, y);

// GPU side
__device__
void csrMult(int n, int* Rp, int* C, float* V, float* x, float* y) {
 int r = blockIdx.x * blockDim.x + threadIdx.x;
 if (r < n) {
 int rBeg = Rp[r];
 int rSize = Rp[r + 1] - Rp[r];
 y[r] = multRow(rSize, C + rBeg, V + rBeg, x);
 }
}

CSR multiplication in CUDA

Instead of loop, use these

provided variables as

per-thread “coordinates”
for data access

? ? ?
What do we need to watch out for when

programming using CUDA?

SPMD promises us the power of writing scalar programs and running
them with high parallelism

It’s (relatively) easy to write a SPMD program that runs, BUT:

Hardware-aware SPMD

int r = blockIdx.x * blockDim.x + threadIdx.x;
if (r < n) {
 int rBeg = Rp[r];
 int rSize = Rp[r + 1] - Rp[r];
 y[r] = multRow(rSize, C + rBeg, V + rBeg, x);
}

Kernel execution

add

load
branch

load
sub

mult
add

load
branch

add
sub

mult
add

load
branch

add
sub

mult
add

load
branch

add
sub

mult
add

load
branch

add
sub

mult
…

…
…

…
…

…

. . .
Cycle 1
Cycle 2
Cycle 3

.

.

.

What
happens
if r >= n?!

Active threads

image source How to keep track of which threads are active?
How to keep track of when to reconverge?

https://web.archive.org/web/20241102165838/https://developer.nvidia.com/blog/inside-volta/

Execution mask

0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Use single PC and keep
track of which threads

are using that PC

Predicate
non-branching

instructions
Invert mask
on branch

Restore old
mask

Execution mask & loops
float multRow(int rSize, int* Cr,
 float* Vr, float* x) {
 float sum = 0;
 for (int i = 0; i < rSize; i++) {
 sum += Vr[i] * x[Cr[i]];
 }
 return sum;
}

iter 1 iter 1

(rSize = 3) (rSize = 0) (rSize = 1)

iter 2

iter 3

1 0 1

1 0 0

1 0 0

1 1 1

return return returnreconverge!

sum = 0 sum = 0sum = 0

each iteration
computes branch

? ? ?
Where might execution mask usage become

complicated?

nVidia Volta
Allows switching between

execution paths
…how?

image source

https://web.archive.org/web/20241102165838/https://developer.nvidia.com/blog/inside-volta/

An accelerator on the accelerator
(see also Ray Tracing cores)

Circuits on GPUs optimized for AI
(matrix operation D = A * B + C)

Uses mixed-precision to speed up
math, reduce memory demands

Claim huge (8x-32x per
generation) performance gains
over SM matrix multiply

Tensor cores
image source

image source

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

Sparse acceleration

source

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

GA100 SM in Ampere
source

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Local memory for thread
state

Shared memory to
communicate across
threads

GPU memory model
image source

Resides in device
memory, not on

chip… why?

How?

__shared__ bool isDone;
…
if (threadIdx.x == 0)

if (ecc) isDone = true;
…
__syncthreads();
if (isDone) {
 …
}

also constant
memory (64 KB)

255 regs

48-227KB

512 KB

also L2 $ (6-96 MB)

8-32 GB

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy

