
GPU memory
Final project abstract + hypothesis instructions 
posted (linked right above schedule)



Local memory for thread 
state

Shared memory to 
communicate across 
threads

GPU memory model
image source

Resides in device 
memory, not on 

chip… why?

How?

__shared__ bool isDone;
…
if (threadIdx.x == 0)

if (x) isDone = true;
…
__syncthreads();
if (isDone) {
     …
}

also constant 
memory (64 KB)

255 regs

48-227KB

512 KB

also L2 $ (6-96 MB)

8-32 GB

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy


DRAM and GDDR image source

(Not pictured: further organized into banks)
Activating a row takes several cycles
After row is activated, data can be read

Latency/locality tradeoff: 
Controller waits for enough requests to a 
single row before servicing all of them at 

once

Generally, GDDR (graphics DDR) variants 
have higher latency and higher bandwidth 

https://en.wikipedia.org/wiki/Row_hammer#/media/File:DRAM.svg


GPU memory: matrix multiply
image source

What’s wrong with this?

thread block computes these elts

every thread here will access same column
…but all the rest will access different columns
(same for rows)

not optimally taking advantage of 
sharing memory within block!

multiple columns/rows may not fit in shared memory
column doesn’t play well with cache lines

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory


Tiling first 
load

first 
load

partial 
result

second 
load

second 
load

partial 
result

(make sure to 
__syncthreads() 
between loads!!)

image source

(full code, including loading from CPU 
memory to device memory, in image source 
link)

int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
int row = threadIdx.y;
int col = threadIdx.x;
...
// for-loop on m (number of tiles to load):
Matrix Asub = GetSubMatrix(A, blockRow, m);
Matrix Bsub = GetSubMatrix(B, m, blockCol);
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);

Each thread does two loads/stores here
Can hardware design make this more efficient?

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory


// For CSR row multiplication example, adapted from P&H fig. B.8.5

__shared__ float cache [blocksize];
unsigned int block_begin = blockIdx.x * blockDim.x;
unsigned int block_end = block_begin + blockDim.x;
unsigned int row = block_begin + threadIdx.x;
if(row<num_rows) cache [threadIdx.x] = x[row];
__syncthreads();
...
// when reading each x_j
if (j >= block_begin j < block_end)
    x_j = cache[j-block_begin];
else
    x_j = x[j];

Shared memory as cache

Not guaranteed locality (as we 
were in matrix multiplication), 
but increases performance as 

long as multiplying row i 
accesses values of x near x[i] 



Coalescing unit detects if accesses from same warp are in adjacent 
addresses and performs single, wide access (reduces uses of DRAM line)

Works for both global memory and local memory!

Important for programmer to be mindful of memory indexing

Example: avoid having each thread do its own malloc (source)

__shared__ int* data;
if (threadIdx.x == 0) {
    size_t size = blockDim.x * 64;
    data = (int*)malloc(size);
}
__syncthreads();

Coalesced memory access

now adjacent threads can do 
adjacent accesses into data, 

eg data[threadIdx.x]!

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#per-thread-block-allocation


Shared memory is banked (32 banks for 32 threads/warp; successive 
words in successive banks)

really fast as long as no bank conflicts (have to do an extra round of 
accesses for every conflict – can significantly slow down warp)

Shared memory banks

Which code is better for working with data of length n = 2 * blocksize 
when i = threadIdx.x?

A[i * 2] = A[i * 2] + B[i * 2] // 0, 2, 4, 6… 2n - 2
A[i * 2 + 1] = A[i * 2 + 1] + B[i * 2 + 1] // 1, 3, 5, 7… 2n - 1

vs

A[i] = A[i] + B[i] // 0, 1, 2, 3, … n - 1
A[n + i] = A[n + i] + B[n + 1] // n, n + 1, n + 2, … 2n - 1

 



void csrMult(int n, int* Rp, int* C, float* V, float* x, float* y) {
    int r = blockIdx.x * blockDim.x + threadIdx.x;
    if (r < n) {
        int rBeg = Rp[r];
        int rSize = Rp[r + 1] - Rp[r];
        float sum = 0
        for (int i = 0; i < rSize; i++) {
            sum += V[rBeg + i] * x[C[rBeg + i]];
        }
        y[r] = sum;
    }
}

What’s wrong with our CSR mult?



Solution: pad and transpose

Padding: allows for avoiding control 
flow divergence

Transpose: allows for coalescing
In general will run faster, despite 

extraneous multiplies by 0

Image source: Kirk, David B., and W. Hwu 
Wen-Mei. Programming massively parallel 
processors: a hands-on approach. Morgan 
kaufmann, 2016., figs 10.8 and 10.9
Brown library access

https://learning.oreilly.com/library/view/programming-massively-parallel/9780128119877/


Also called cumulative sum, prefix sum

Used for load-balancing algorithms, polynomial evaluation, etc

turns [x0, x1, x2, … , xk] into [x0, (x0⊕x1), (x0⊕x1⊕x2), … , (x0⊕x1⊕x2⊕…⊕xk)]

e.g. [1, 3, 0, 7] turns into [1, 4, 4, 11]

Sequentially:

y[0] = x[0]
for (int i = 1; i <= k; i++) {
    y[i] = y[i - 1] + x[i];
}

Inclusive scan



(Other, efficient algorithms exist – see Kirk and Hwu Chapter 8)

float plusScan(float* x) {
    int i = threadIdx.x;
    int n = blockDim.x;
    for (int o = 1; o < n; o *= 2) {
        float t;
        if (i >= o) t = x[i - o];
        __syncthreads();

        if (i >= o) x[i] = t + x[i];
        __syncthreads();
  }
  return x[i];
}

Parallel scan

P&H fig. B.8.8

Does parallel scan result in bank conflicts?



? ? ?
__syncthreads() synchronizes all threads 

within a block.
How can threads in different blocks safely 

communicate with each other?

(Answer: atomic global memory accesses)



Must copy between CPU and GPU memory before/after launching kernel

Full code

int main() // on host
{
    // Allocate input vectors h_A and h_B in host memory
    float* h_A = (float*)malloc(size);
    // Initialize input vectors
    ...
    // Allocate vectors in device memory
    float* d_A;
    cudaMalloc(&d_A, size);
    // Copy vectors from host memory to device memory
    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

CPU/GPU communication

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory


GPU can access CPU’s memory

Traditionally used with integrated graphics (GPU on same SoC as CPU)

CUDA example

Unified memory

image source: Apple, inc

Pros/cons?

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-opt-in


Vector processors and SIMD multimedia 
modifies the ISA to support DLP. BUT:
● Supports only modest levels of 

parallelism (for SIMD extensions)
● Requires changes to ISA
● Requires compiler that can 

effectively vectorize code (or a 
skilled programmer)

SPMD model/GPUs: Allows programmer to 
write a kernel, which the hardware 
schedules on many threads. BUT:
● Proper performance requires proper 

understanding of architecture 
(branching/control divergence, 
memory access, synchronization)

● Requires interaction of CPU/GPU 
(might be a pro or a con)

HW/SW interface



Circuits on GPUs optimized for AI

Uses mixed-precision to speed up math, reduce memory demands

Claim ~8x performance gains over SM matrix multiply

Bonus: tensor cores

image source

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

