
GPUs

_AXPY loop (aX + Y)
load x

load y
mul

add
store
inc i

branch
load x

load y
mul

add
store
inc i

branch
load x

load y
mul

add

load x load y
mul

inc i
load x load y inc i

add mul load x load y
store add mul inc i

branch store add
branch store

DLP approaches

load x

load y
mul

add
store

load x

load y
mul

add
store

load x

load y
mul

add
store

load x
load x
load x

mul
mul
mul

load y
load y
load y

add
storeadd
storeadd
store

require additions to
ISA and hardware

Single program, Multiple data – spawn many versions of same program

Note that this is a programming model, not a hardware model!

How threads are scheduled is invisible to programmer

one thread for each index
void myThread(int n, float a, …) {
 int i = tid; // thread ID
 if (i < n)
 y[i] = a * x[i] + y[i];
}

SPMD approach

load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?

? ? ?
In what ways is SPMD a more flexible model
than the SIMD processors we saw last week?

load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?

An nxn matrix is sparse if the number m of nonzero entries is a small
fraction of the total

CSR (compressed sparse row) representation allows for easy access to
nonzero elts

Sparse matrices

A

B C

D

E F G
A B C D E F G

1 2 3 0 1 3 4

0 1 3 3 4 7Row pointer
(Rp)

Column
index (C)

Value (V)

CSR can be
computed from
original matrix.

Can the conversion
be parallelized?

float multRow(int rSize, int* Cr,
 float* Vr, float* x) {

 float sum = 0;
 for (int i = 0; i < rSize; i++) {
 sum += Vr[i] * x[Cr[i]];
 }
 return sum;
}

Multiplication in CSR
A

B C

D

E F G

A B C D E F G

1 2 3 0 1 3 4

0 1 3 3 4 7Row pointer
(Rp)

Column
index (C)

Value (V)

x0

x1

x2

x3

x4

X

for (int r = 0; r < n; r++) {
 int rBeg = Rp[r];
 int rSize = Rp[r + 1] - Rp[r];
 result[r] = multRow(rSize, C[rBeg],
 V[rBeg], x);
}

Rp[r + 1] - Rp[r] C + Rp[r]

V + Rp[r]

for (int r = 0; r < n; r++) {
 int rBeg = Rp[tid];
 int rSize = Rp[tid + 1] - Rp[tid];
 result[tid] = multRow(rSize, C[rBeg],
 V[rBeg], x);
}

can turn
this

(outer
loop!!)

into
threads!

? ? ?
How can we run a SPMD program using SIMD

ideas?

Single instruction, multiple threads

● Each thread uses the same program memory, PC
(but its own registers, FUs, stack pointer)

● Warp (Nvidia term) of threads executes in lockstep

SIMT

load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?

image source

Cycle 1
Cycle 2
Cycle 3

.

.

.

https://en.wikipedia.org/wiki/Warp_and_weft#/media/File:Warp_and_weft_2.jpg

Recap:

Flynn’s taxonomy: describes hardware computation model

SISD: single instruction, single data (traditional uniprocessor)

SIMD: single instruction, multiple data (ISA/hardware for DLP)

MIMD: multiple instruction, multiple data (multiprocessor)

SPMD: single program, multiple data (describes programming model)

SIMT: single instruction, multiple threads; SIMD-style computation
(hardware) to implement SPMD operation

S...P?I?...M?...D?T?!? What???

What do we do if n = 8192??

for (int i = 0; i < n; i++) {
 y[i] = a * x[i] + y[i];
}

Large data
SISD approach: ¯_(ツ)_/¯

Vector approach: vector
inner loop, scalar outer

loop

void myThread(int n, float a, …) {
 int i = tid; // thread ID
 if (i < n)
 y[i] = a * x[i] + y[i];
}

SPMD approach: get a
GPU

← aka: spawn 8192 of
those guys on beefy

hardware

Graphics Processing Unit

Accelerator that originally helped CPU render 3d graphics

Predecessors: arcade game circuits, VGA controllers

Huge parallelism, programmability: attractive for largescale computations

What’s a GPU?

image source

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

A heck of a lot of SIMT processors, arranged
in groups

Nvidia terminology: Streaming
Multiprocessors (SMs)

What’s a GPU? (CS1952y answer)

image source

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)#/media/File:Streaming-Multiprocessor.jpg

? ? ?
Warp size is 32 (25) threads

We want to run 8192 (213) threads
Do we need 256 SMs?

CUDA (Compute Unified Device Architecture): API for programming Nvidia
GPUs at the thread level

Programmers don’t worry about warps (controlled by hardware)

Thread block: threads running on the same SM (scheduled by hardware)

Exposed to programmer – can make assumptions about eg shared
memory within a block

Grid: entirety of thread workload

Programming model + terminology

so how are warps
managed within a block?

(Truly more like multiwarping)

Finegrained multithreading, again

P&H fig. B.4.2

Why not just run all of
warp 1, then 2, then 3?

warp scheduler

Programmer

Chooses block size, # threads

Writes one program to run on
many, many threads (SPMD)

Recap
Hardware

Schedules each block to an
SM

Threads inside blocks are split
up into warps to enable
lockstep execution

// CPU side to invoke 8192 threads to run 8000 computations
__host__
// 32 blocks, 256 threads per block
myThread<<<32, 256>>>(8000, 2.0, x, y);

// GPU side
__device__
void myThread(int n, float a, float* x, float* y) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n)
 y[i] = a*x[i] + y[i];
}

SAXPY example rewritten in CUDA

