
Execution on GPUs
Suggest topics for remaining lectures on Ed!
Final project gearup tomorrow, 8:30pm, CIT 265 + zoom



Review
SPMD model allows us to write one program 
and spawn it as many threads

SIMT processor (Streaming Multiprocessor on 
nVidia GPUs) allows us to execute a warp of 
threads in lockstep; processor schedules warps

Threads are grouped into blocks (+sometimes 
clusters within blocks); full workload is a grid

CUDA is an API for programming nVidia GPUs at 
the thread level

source

Note: this is not a graphics course, and not a GPU 
programming course

We’re studying the details of highly parallel architectures

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#heterogeneous-programming


They’re not paying me (but given their stocks, they 
could afford it…)

Using their terminology/referring to their guide for 
convenience and because…

A note about nVidia

I respect H&P for defining their own, 
non-nVidia vocabulary, but at this 

point it’s a losing battle

(We can certainly talk about 
whether this amount of dominance 

is an overall good for society/the 
market/the consumer, with the 

caveat that I’m not an economist 
and my takes are casual)

source

https://www.tomshardware.com/pc-components/gpus/gpu-sales-saw-32-year-over-year-increase-in-q4-amds-market-share-rises-to-19


nVidia PTX ISA
PTX = parallel thread execution

Full summary in P&H fig. B.4.3

Suffixes may define operand data type, memory space

Arithmetic: add, sub, mul, etc

Special function: sqrt, sin, cos, etc

Logical: and, or, xor, etc

Memory: ld, st, tex (texture lookup), atom

Control: branch, call, ret, sync, exit



__host__
// set up matrix in CSR format here: ...
// 8 blocks, 256 threads per block to do multiplication
csrMult<<<8, 256>>>(2048, Rp, C, V, x, y);

// GPU side
__device__
void csrMult(int n, int* Rp, int* C, float* V, float* x, float* y) {
    int r = blockIdx.x * blockDim.x + threadIdx.x;
    if (r < n) {
        int rBeg = Rp[r];
        int rSize = Rp[r + 1] - Rp[r];
        y[r] = multRow(rSize, C + rBeg, V + rBeg, x);
    }
}

CSR multiplication in CUDA

Instead of loop, use these 

provided variables as 

per-thread “coordinates” 
for data access



int r = blockIdx.x * blockDim.x + threadIdx.x;
if (r < n) {
    int rBeg = Rp[r];
    int rSize = Rp[r + 1] - Rp[r];
    y[r] = multRow(rSize, C + rBeg, V + rBeg, x);
}

Kernel execution
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Active threads

image source How to keep track of which threads are active?
How to keep track of when to reconverge?

https://developer.nvidia.com/blog/inside-volta/


Execution mask
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Use single PC and keep 
track of which threads 

are using that PC



Execution mask & loops
float multRow(int rSize, int* Cr,
              float* Vr, float* x) {
    float sum = 0;
    for (int i = 0; i < rSize; i++) {
        sum += Vr[i] * x[Cr[i]];
    }
    return sum;
}

iter 1 iter 1

(rSize = 3) (rSize = 0) (rSize = 1)

iter 2

iter 3

1 0 1
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return return returnreconverge!

sum = 0 sum = 0sum = 0



? ? ?
Where might execution mask usage become 

complicated?





nVidia Volta
Allows switching between 

execution paths
…how?

image source

https://developer.nvidia.com/blog/inside-volta/


? ? ?
Downside of independent thread scheduling: 

space to store thread state, convergence 
optimizer hardware

Upsides?



Local memory for thread 
state

Shared memory to 
communicate across 
threads

GPU memory model
image source

Resides in device 
memory, not on 

chip… why?

How?

__shared__ bool isDone;
…
if (threadIdx.x == 0)

if (x) isDone = true;
…
__syncthreads();
if (isDone) {
     …
}

also constant 
memory (64 KB)

255 regs

48-227KB

512 KB

also L2 $ (6-96 MB)

8-32 GB

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy


GPU memory: matrix multiply
image source

What’s wrong with this?

thread block computes these elts

every thread here will access same column
…but all the rest will access different columns
(same for rows)

not optimally taking advantage of 
sharing memory within block!

multiple columns/rows may not fit in shared memory
column doesn’t play well with cache lines

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory


Tiling first 
load

first 
load

partial 
result

second 
load

second 
load

partial 
result

(make sure to 
__syncthreads() 
between loads!!)

image source

(full code, including loading from CPU 
memory to device memory, in image source 
link)

int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
int row = threadIdx.y;
int col = threadIdx.x;
...
// for-loop on m (number of tiles to load):
Matrix Asub = GetSubMatrix(A, blockRow, m);
Matrix Bsub = GetSubMatrix(B, m, blockCol);
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);

Each thread does two loads/stores here
Can hardware design make this more efficient?

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory


Coalescing unit detects if accesses from same warp are in adjacent 
addresses and performs single, wide access (reduces uses of DRAM line)

Works for both global memory and local memory!

Important for programmer to be mindful of memory indexing

Example: avoid having each thread do its own malloc (source)

__shared__ int* data;
if (threadIdx.x == 0) {
    size_t size = blockDim.x * 64;
    data = (int*)malloc(size);
}
__syncthreads();

Coalesced memory access

now adjacent threads can do 
adjacent accesses into data, 

eg data[threadIdx.x]!

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#per-thread-block-allocation


Shared memory is banked (32 banks for 32 threads/warp; successive 
words in successive banks)

really fast as long as no bank conflicts (have to do an extra round of 
accesses for every conflict – can significantly slow down warp)

Shared memory banks

Which code is better for working with data of length n = 2 * blocksize 
when i = threadIdx.x?

A[i * 2] = A[i * 2] + B[i * 2] // 0, 2, 4, 6… 2n - 2
A[i * 2 + 1] = A[i * 2 + 1] + B[i * 2 + 1] // 1, 3, 5, 7… 2n - 1

vs

A[i] = A[i] + B[i] // 0, 1, 2, 3, … n - 1
A[n + i] = A[n + i] + B[n + 1] // n, n + 1, n + 2, … 2n - 1

 



void csrMult(int n, int* Rp, int* C, float* V, float* x, float* y) {
    int r = blockIdx.x * blockDim.x + threadIdx.x;
    if (r < n) {
        int rBeg = Rp[r];
        int rSize = Rp[r + 1] - Rp[r];
        float sum = 0
        for (int i = 0; i < rSize; i++) {
            sum += V[rBeg + i] * x[C[rBeg + i]];
        }
        y[r] = sum;
    }
}

What’s wrong with our CSR mult?



Solution: pad and transpose

Padding: allows for avoiding control 
flow divergence

Transpose: allows for coalescing
In general will run faster, despite 

extraneous multiplies by 0

Image source: Kirk, David B., and W. Hwu 
Wen-Mei. Programming massively parallel 
processors: a hands-on approach. Morgan 
kaufmann, 2016., figs 10.8 and 10.9
Brown library access

https://learning.oreilly.com/library/view/programming-massively-parallel/9780128119877/

