
Execution on GPUs
Suggest topics for remaining lectures on Ed!
Final project gearup tomorrow, 8:30pm, CIT 265 + zoom

Review
SPMD model allows us to write one program
and spawn it as many threads

SIMT processor (Streaming Multiprocessor on
nVidia GPUs) allows us to execute a warp of
threads in lockstep; processor schedules warps

Threads are grouped into blocks (+sometimes
clusters within blocks); full workload is a grid

CUDA is an API for programming nVidia GPUs at
the thread level

source

Note: this is not a graphics course, and not a GPU
programming course

We’re studying the details of highly parallel architectures

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#heterogeneous-programming

They’re not paying me (but given their stocks, they
could afford it…)

Using their terminology/referring to their guide for
convenience and because…

A note about nVidia

I respect H&P for defining their own,
non-nVidia vocabulary, but at this

point it’s a losing battle

(We can certainly talk about
whether this amount of dominance

is an overall good for society/the
market/the consumer, with the

caveat that I’m not an economist
and my takes are casual)

source

https://www.tomshardware.com/pc-components/gpus/gpu-sales-saw-32-year-over-year-increase-in-q4-amds-market-share-rises-to-19

nVidia PTX ISA
PTX = parallel thread execution

Full summary in P&H fig. B.4.3

Suffixes may define operand data type, memory space

Arithmetic: add, sub, mul, etc

Special function: sqrt, sin, cos, etc

Logical: and, or, xor, etc

Memory: ld, st, tex (texture lookup), atom

Control: branch, call, ret, sync, exit

__host__
// set up matrix in CSR format here: ...
// 8 blocks, 256 threads per block to do multiplication
csrMult<<<8, 256>>>(2048, Rp, C, V, x, y);

// GPU side
__device__
void csrMult(int n, int* Rp, int* C, float* V, float* x, float* y) {
 int r = blockIdx.x * blockDim.x + threadIdx.x;
 if (r < n) {
 int rBeg = Rp[r];
 int rSize = Rp[r + 1] - Rp[r];
 y[r] = multRow(rSize, C + rBeg, V + rBeg, x);
 }
}

CSR multiplication in CUDA

Instead of loop, use these

provided variables as

per-thread “coordinates”
for data access

int r = blockIdx.x * blockDim.x + threadIdx.x;
if (r < n) {
 int rBeg = Rp[r];
 int rSize = Rp[r + 1] - Rp[r];
 y[r] = multRow(rSize, C + rBeg, V + rBeg, x);
}

Kernel execution

add

load
branch

load
sub

mult
add

load
branch

add
sub

mult
add

load
branch

add
sub

mult
add

load
branch

add
sub

mult
add

load
branch

add
sub

mult
…

…
…

…
…

…

. . .
Cycle 1
Cycle 2
Cycle 3

.

.

.

What
happens
if r >= n?!

Active threads

image source How to keep track of which threads are active?
How to keep track of when to reconverge?

https://developer.nvidia.com/blog/inside-volta/

Execution mask

0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Use single PC and keep
track of which threads

are using that PC

Execution mask & loops
float multRow(int rSize, int* Cr,
 float* Vr, float* x) {
 float sum = 0;
 for (int i = 0; i < rSize; i++) {
 sum += Vr[i] * x[Cr[i]];
 }
 return sum;
}

iter 1 iter 1

(rSize = 3) (rSize = 0) (rSize = 1)

iter 2

iter 3

1 0 1

1 0 0

1 0 0

0 0 0

return return returnreconverge!

sum = 0 sum = 0sum = 0

? ? ?
Where might execution mask usage become

complicated?

nVidia Volta
Allows switching between

execution paths
…how?

image source

https://developer.nvidia.com/blog/inside-volta/

? ? ?
Downside of independent thread scheduling:

space to store thread state, convergence
optimizer hardware

Upsides?

Local memory for thread
state

Shared memory to
communicate across
threads

GPU memory model
image source

Resides in device
memory, not on

chip… why?

How?

__shared__ bool isDone;
…
if (threadIdx.x == 0)

if (x) isDone = true;
…
__syncthreads();
if (isDone) {
 …
}

also constant
memory (64 KB)

255 regs

48-227KB

512 KB

also L2 $ (6-96 MB)

8-32 GB

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy

GPU memory: matrix multiply
image source

What’s wrong with this?

thread block computes these elts

every thread here will access same column
…but all the rest will access different columns
(same for rows)

not optimally taking advantage of
sharing memory within block!

multiple columns/rows may not fit in shared memory
column doesn’t play well with cache lines

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Tiling first
load

first
load

partial
result

second
load

second
load

partial
result

(make sure to
__syncthreads()
between loads!!)

image source

(full code, including loading from CPU
memory to device memory, in image source
link)

int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
int row = threadIdx.y;
int col = threadIdx.x;
...
// for-loop on m (number of tiles to load):
Matrix Asub = GetSubMatrix(A, blockRow, m);
Matrix Bsub = GetSubMatrix(B, m, blockCol);
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);

Each thread does two loads/stores here
Can hardware design make this more efficient?

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Coalescing unit detects if accesses from same warp are in adjacent
addresses and performs single, wide access (reduces uses of DRAM line)

Works for both global memory and local memory!

Important for programmer to be mindful of memory indexing

Example: avoid having each thread do its own malloc (source)

__shared__ int* data;
if (threadIdx.x == 0) {
 size_t size = blockDim.x * 64;
 data = (int*)malloc(size);
}
__syncthreads();

Coalesced memory access

now adjacent threads can do
adjacent accesses into data,

eg data[threadIdx.x]!

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#per-thread-block-allocation

Shared memory is banked (32 banks for 32 threads/warp; successive
words in successive banks)

really fast as long as no bank conflicts (have to do an extra round of
accesses for every conflict – can significantly slow down warp)

Shared memory banks

Which code is better for working with data of length n = 2 * blocksize
when i = threadIdx.x?

A[i * 2] = A[i * 2] + B[i * 2] // 0, 2, 4, 6… 2n - 2
A[i * 2 + 1] = A[i * 2 + 1] + B[i * 2 + 1] // 1, 3, 5, 7… 2n - 1

vs

A[i] = A[i] + B[i] // 0, 1, 2, 3, … n - 1
A[n + i] = A[n + i] + B[n + 1] // n, n + 1, n + 2, … 2n - 1

void csrMult(int n, int* Rp, int* C, float* V, float* x, float* y) {
 int r = blockIdx.x * blockDim.x + threadIdx.x;
 if (r < n) {
 int rBeg = Rp[r];
 int rSize = Rp[r + 1] - Rp[r];
 float sum = 0
 for (int i = 0; i < rSize; i++) {
 sum += V[rBeg + i] * x[C[rBeg + i]];
 }
 y[r] = sum;
 }
}

What’s wrong with our CSR mult?

Solution: pad and transpose

Padding: allows for avoiding control
flow divergence

Transpose: allows for coalescing
In general will run faster, despite

extraneous multiplies by 0

Image source: Kirk, David B., and W. Hwu
Wen-Mei. Programming massively parallel
processors: a hands-on approach. Morgan
kaufmann, 2016., figs 10.8 and 10.9
Brown library access

https://learning.oreilly.com/library/view/programming-massively-parallel/9780128119877/

