SIMD in modexn
computers

oooooo

e O e e & e



Measuring performance: convoys and chimes

Convoy: set of vector instructions that can potentially execute
together

Chime: time it takes to execute a convoy

vlies2.v v0O, s

vmul.vx vl, vO, tO

vle32.v v2, s2

=Tala Approximation of runtime for this

vse32.v v3, t1 vector machine: 3 chimes (~3 *

vlen/lanes clock cycles)
What complicates this metric?
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Measuring performance: chaining
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https://ed-thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-1-HRM.html
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Cray X1 architecture (2003)

ISA designed from scratch

Multi-stream processor consisting of four

single-stream processors

Each SSP has: scalar unit/scalar

cache, 2-lane vector unit

Connected to external caches (mostly for
scalars, but can be used by vectors for
programs w/ high temporal locality, or

bypassed)

Each MSP can have up to 2048

outstanding memory requests
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Cxay X1 nodes (H&P fig. G.12)
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NUMA: non-uniform memory access
ecaches only cache their local memory
writes to remote memory invalidate
corresponding ecache data
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https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora#Vector_core

What are the limits of vector processors?



Fisher, Joseph A. "Very long instruction word
architectures and the ELI-512." Proceedings of

V L IW p ap e r the 10th annual international symposium on

Computer architecture. 1983. (link)

WHY NOT VECTOR MACHINES?

Vector machines seem to offer much more parallelism than
the factor of 2 or 3 that current VLIWSs offer. Although vector
machines have their place, we don't believe they have much
chance of success on general-purpose scientific code. They are
crucifyingly difficult to program, and they speed up only inner

loops, not the rest of the code. And vectorizing works only on inner loops; the rest of the

code gets no speedup whatsoever. Even if 90% of the code

were in inner loops, the other 10% would run at the same speed

as on a sequential machine. Even if you could get the 80% to

run in zero time, the other 10% would limit the speedup to a

factor of 10.
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https://courses.cs.washington.edu/courses/cse548/16wi/Fisher-VLIW.pdf

Amdahl’'s law

Used to assess theoretical effectiveness of speedup

In a nutshell: gains in speeding up a portion of a program are limited by
the fraction of time that portion is actually used

Mathematically: S () 1
latency \S) =

1-p)+2

For parallelization: serial bottleneck (non-parallelizable code) limits
effectiveness of vector processors
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https://www.datacenterdynamics.com/en/news/new-york-dfs-to-acquire-supercomputer-to-understand-and-regulate-ai/
https://www.noaa.gov/news-release/noaa-completes-upgrade-to-weather-and-climate-supercomputer-system
https://theintercept.com/2025/02/14/irs-ai-nvidia-tax/

SIMD for multimedia

RGBA images: 8 bits/channel (32 bits total)
Audio: 8, 16, 24, or 32 bits per sample

Simplifications of SIMD for multimedia: might not need strided access,
gather/scatter, masked operations, custom vector length

— Doesn’t typically make sense to put a powerful VPU on a processor

Enter multimedia SIMD extensions

How can smaller data widths make SIMD
functionality easier to add to CPUs?



RISC-V P: packed SIMD

(Doesn't actually exist, but the letter “P” is reserved for such a thing)

Reuses floating-point registers
Packs multiple values in one register based on configuration

Ex: 64-Dbit register can hold 8 8-bit values, 4 16-bit values, 2 32-bit
values, or 1 64-bit value

Requires special load/store operations

Hardware support for parallel operation on each value in register



ARMv6é SIMD

Packs multiple 16- or 8-bit values into 32 bit registers

Image source

1 1 1 1 Note: later ARM chips use NEON
1 : (their “Advanced SIMD”
extension), storing vectors in
64- and 128-bit registers



https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions
https://developer.arm.com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology/Registers--vectors--lanes-and-elements?lang=en

Use of ARM NEON

Compilers are sometimes hit-or-miss when figuring out if they can
vectorize code

Multimedia applications: people can use libraries

To get more flexibility than a library, ARM provides intrinsics


https://developer.arm.com/documentation/102467/0201/Why-use-Neon-intrinsics-?lang=en

x86: MMX, SSE, AVX

MMX: not an acronym, packs values in 64-bit registers, supports integer
operations only

SSE: “Streaming SIMD Extensions”, 128-bit registers, allows for floating point

AVX: “Advanced Vector Extensions”, 8x32 or 4x64 vector registers (AVX 2
adds gather, AVX 512 supports 512-bit registers)

In typical x86 fashion, operand size is fixed in the opcode (so there are
hundreds of instructions for each extension)
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https://www.ibm.com/topics/convolutional-neural-networks
https://en.wikichip.org/wiki/x86/avx512_vnni
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From the Intel optimization manual

P 5-11 (193): Converting to SIMD chart

P 8-9 (287): Blocking (handling large matrices)
P 14-2 (390): PCMPXSTRY (see also 14-12 onward)
P 15-7 (445): Mixing SSE and AVX (YMM register)
P 15-20 (458): Data alignment and caches

P 15-24 (462): Masked loads and paging


https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
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Figure 5-3. Converting to Intel® Streaming SIMD Extensions Chart



