SIMD in modexn
computers

oooooo

e O e e & e

Measuring performance: convoys and chimes

Convoy: set of vector instructions that can potentially execute
together

Chime: time it takes to execute a convoy

vlies2.v v0O, s

vmul.vx vl, vO, tO

vle32.v v2, s2

=Tala Approximation of runtime for this

vse32.v v3, t1 vector machine: 3 chimes (~3 *

vlen/lanes clock cycles)
What complicates this metric?

®

Measuring performance: chaining

vle32.v vO, si
vmul.vx vi1, vO, tO

vle32.v v2, s2 L/s ALV

N b,(-
vadd.vv v3,mwvldy v2 o \w gs::::e
vse32.v v3, ti ;. > O

l
3 1
i~ 3
O
i O
[[
h | T
3
0
[
1
3

Cray-1
Axrchitecture
(1976)

Image source

AN
A

Memory

((A0)+(AK)

Vector Registers

Logical
Add

Vector
Functional
Sj |Units

’-—L T

!

L7
_— = Ak
_—]

774

Vector
Congrol

To00
(A0) through

T77

et S S1|point

&

vk Add

Vi

Floating

Functional
Si Units

v
<

Logica

((Ah) + jkm)

no)| 800 /l A

S§ "
5K Add
Si

Exchange

Control units
]
Vector

Address Registers

Scalar
Functional

Control
l VL l A

Ak

0o

t=*| through A6 Multip)
B77 Add
3 Aj
Ak
T + | 3k M A] el
Functional
3l |ynits

LIP

Instruction

-
Execution
-

https://ed-thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-1-HRM.html

®

Cray X1 architecture (2003)

ISA designed from scratch

Multi-stream processor consisting of four

single-stream processors

Each SSP has: scalar unit/scalar

cache, 2-lane vector unit

Connected to external caches (mostly for
scalars, but can be used by vectors for
programs w/ high temporal locality, or

bypassed)

Each MSP can have up to 2048

outstanding memory requests

MSP
Y Y Y
ssp ssP ssP ssP
A A A A
Y Y Y Y
05MB || 0.5MB || 0.5MB || 0.5MB

Ecache

Ecache

Ecache

Ecache

H&P fig. G.11

' Y YV

y

\

Yvy

I Y Y

Superscalar unit Vector unit

®

Cxay X1 nodes (H&P fig. G.12)

S S S S S S S S S S S S

—

—

\
]

mem)(mem) (mem) (mem mem)(mem)(mem)(mem mem

@em) @em)
10 | 10 | 51 GFLOPS, 200 GB/sec

NUMA: non-uniform memory access
ecaches only cache their local memory
writes to remote memory invalidate
corresponding ecache data

...

- Scalar Processing Unit (SPU) .
C S . Pre-decode L1 Instruction Cache Vector PmCESSIng Unit (VPU)
NEC SX | =
: Inst Inst Inst Inst :: Instruction Buffer | Front
. Branch e End
. Predictor l Instruction Fetch .
Au ro r a E (BFR:')OM s B E OB :E I Rename / Allocate / Retirement I
: End 4-Way Decode ||mo| S”Chl”e”d”ulllel r”“l NERRRRRRRNN |
2@18 : i Execution S
: . Engine S
. ExecutiorI Rename/Allocate /Retirement | i Complex (EEa =
: e E Engine .. Operati I
. w i \Ie:tor
image source 0 e l LT H:.:::::::
{61 architectural + 8 renami .‘ z : z ; 3 = PP
5 9 [Port1] [Port2] [Port3] In:ono] [Porta]
W o Forwarding
CEUe Ceau] Fera] = Beeed
- . L1 Data Cache e Store Buffer Load Buffer
Shared LLC (last-level . g e by Zite e

CGChe) W|th]28 bans Memory Subsystem .':’ Memory Sub system

...............................

Uses high-bandwidth
Address Generation & Fanslation /
memory (HbM) - 4 ' 32 eleméntscyde

17requestsiycle

32 elementskycle

|Request Crossbar | | Reply Crossbar | -

EEEEEEEEEE:

https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora#Vector_core

What are the limits of vector processors?

Fisher, Joseph A. "Very long instruction word
architectures and the ELI-512." Proceedings of

V L IW p ap e r the 10th annual international symposium on

Computer architecture. 1983. (link)

WHY NOT VECTOR MACHINES?

Vector machines seem to offer much more parallelism than
the factor of 2 or 3 that current VLIWSs offer. Although vector
machines have their place, we don't believe they have much
chance of success on general-purpose scientific code. They are
crucifyingly difficult to program, and they speed up only inner

loops, not the rest of the code. And vectorizing works only on inner loops; the rest of the

code gets no speedup whatsoever. Even if 90% of the code

were in inner loops, the other 10% would run at the same speed

as on a sequential machine. Even if you could get the 80% to

run in zero time, the other 10% would limit the speedup to a

factor of 10.

N\ ' @

https://courses.cs.washington.edu/courses/cse548/16wi/Fisher-VLIW.pdf

Amdahl’'s law

Used to assess theoretical effectiveness of speedup

In a nutshell: gains in speeding up a portion of a program are limited by
the fraction of time that portion is actually used

Mathematically: S () 1
latency \S) =

1-p)+2

For parallelization: serial bottleneck (non-parallelizable code) limits
effectiveness of vector processors

N\

New York DES to acquire
supercomputer to understand and

reg ulate Al NOAA completes upgrade to weather and
climate supercomputer system

a1t upgrade to the ‘American’ forecast model

Also looking to hire professionals to rur

+- .| THEIRS IS BUYING AN Al S
B E SUPERCOMPUTER FROM ;;O“ﬂ

(also headlines about
E— NVIDIA source 2 India, Japan, Chinag,
New York's Defl How exaghhatis= 1m0 =i == wie— e mens i Germany, Brazil, ... in the
dedicated to ru But it cc ast yeor)

l OK fine.. but what about DLP
for the rest of us?

fBIA |~

Dynamics Information Technology (GDIT))

https://www.datacenterdynamics.com/en/news/new-york-dfs-to-acquire-supercomputer-to-understand-and-regulate-ai/
https://www.noaa.gov/news-release/noaa-completes-upgrade-to-weather-and-climate-supercomputer-system
https://theintercept.com/2025/02/14/irs-ai-nvidia-tax/

SIMD for multimedia

RGBA images: 8 bits/channel (32 bits total)
Audio: 8, 16, 24, or 32 bits per sample

Simplifications of SIMD for multimedia: might not need strided access,
gather/scatter, masked operations, custom vector length

— Doesn’t typically make sense to put a powerful VPU on a processor

Enter multimedia SIMD extensions

How can smaller data widths make SIMD
functionality easier to add to CPUs?

RISC-V P: packed SIMD

(Doesn't actually exist, but the letter “P” is reserved for such a thing)

Reuses floating-point registers
Packs multiple values in one register based on configuration

Ex: 64-Dbit register can hold 8 8-bit values, 4 16-bit values, 2 32-bit
values, or 1 64-bit value

Requires special load/store operations

Hardware support for parallel operation on each value in register

ARMv6é SIMD

Packs multiple 16- or 8-bit values into 32 bit registers

Image source

1 1 1 1 Note: later ARM chips use NEON
1 : (their “Advanced SIMD”
extension), storing vectors in
64- and 128-bit registers

https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions
https://developer.arm.com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology/Registers--vectors--lanes-and-elements?lang=en

Use of ARM NEON

Compilers are sometimes hit-or-miss when figuring out if they can
vectorize code

Multimedia applications: people can use libraries

To get more flexibility than a library, ARM provides intrinsics

https://developer.arm.com/documentation/102467/0201/Why-use-Neon-intrinsics-?lang=en

x86: MMX, SSE, AVX

MMX: not an acronym, packs values in 64-bit registers, supports integer
operations only

SSE: “Streaming SIMD Extensions”, 128-bit registers, allows for floating point

AVX: “Advanced Vector Extensions”, 8x32 or 4x64 vector registers (AVX 2
adds gather, AVX 512 supports 512-bit registers)

In typical x86 fashion, operand size is fixed in the opcode (so there are
hundreds of instructions for each extension)

Vector Neural Network

x86 AVX-512 VNNI PR el

(Convolutional Neural

_ Networks)
Input image
9141 VPMADDWD
oo o
Filter 16-bit

non s (a8 RIA] TR n] (n) a8

Output array * ok ¥ ok * | L.

Output [0][0] = (9*0) + (4*2) + (1%4) SRC2|B,|B;|B,|B; Wi s B3,

+ (1¥1) + (1% 0) + (1%1) + (2% 0) + (1*1) *k *k

=0+8+1+4+1+0+1+0+1 + + + \ |

=16

DEST | ABo+A1B1 | AjBy+A3B; | = = = [AuBsotAsBs
+
PADDD
. ABo+A;1B1 Co
Image source E——— ‘
SRC 1 | AcBo+A1B1 | AzBa#A3B3 | = = = | AgBig+AnBax
+
+ + - o+ |
Image source SRC2| G C: |-++| Ci5 Adorses
N\ ®

ABy+AsB; | |
+Ci

. | AoBiotAsBs
+C

) DEST | A&erae:

https://www.ibm.com/topics/convolutional-neural-networks
https://en.wikichip.org/wiki/x86/avx512_vnni

®

From the Intel optimization manual

P 5-11 (193): Converting to SIMD chart

P 8-9 (287): Blocking (handling large matrices)
P 14-2 (390): PCMPXSTRY (see also 14-12 onward)
P 15-7 (445): Mixing SSE and AVX (YMM register)
P 15-20 (458): Data alignment and caches

P 15-24 (462): Masked loads and paging

https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html

Range or
Precision

Can convert
to Integer?

Can convert to
ingle-precision?,

No

No

Floating Point

I Identify Hot Spots in Code I

Code benefits
from SIMD

Integer or

floating-point?

Performance

Integer

Yes —

Change to use
SIMD Integer

Single Precision

Change to use

If possible, re-arrange data

e 3
N

— for SIMD efficiency
I Align data structures
!

Convert to code to use
SIMD Technologies

!

Follow general coding
guidelines and SIMD
coding guidelines

!

Use memory optimizations
and prefetch if appropriate

1

Schedule instructions to
optimize performance

OM15156

Figure 5-3. Converting to Intel® Streaming SIMD Extensions Chart

