
SIMD in modern
computers

Convoy: set of vector instructions that can potentially execute
together
Chime: time it takes to execute a convoy
vle32.v v0, s1
vmul.vx v1, v0, t0
vle32.v v2, s2
vadd.vv v3, v1, v2
vse32.v v3, t1

Measuring performance: convoys and chimes

Approximation of runtime for this
vector machine: 3 chimes (~3 *

vlen/lanes clock cycles)
What complicates this metric?

Measuring performance: chaining

Cray-1
Architecture
(1976)

image source

https://ed-thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-1-HRM.html

Cray X1 architecture (2003)

H&P fig. G.11

ISA designed from scratch

Multi-stream processor consisting of four
single-stream processors

Each SSP has: scalar unit/scalar
cache, 2-lane vector unit

Connected to external caches (mostly for
scalars, but can be used by vectors for
programs w/ high temporal locality, or
bypassed)

Each MSP can have up to 2048
outstanding memory requests

Cray X1 nodes (H&P fig. G.12)

NUMA: non-uniform memory access
ecaches only cache their local memory

writes to remote memory invalidate
corresponding ecache data

NEC SX
Aurora
(2018)

image source

Shared LLC (last-level
cache) with 128 banks
Uses high-bandwidth

memory (HbM)

https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora#Vector_core

? ? ?
What are the limits of vector processors?

VLIW paper
Fisher, Joseph A. "Very long instruction word
architectures and the ELI-512." Proceedings of
the 10th annual international symposium on
Computer architecture. 1983. (link)

https://courses.cs.washington.edu/courses/cse548/16wi/Fisher-VLIW.pdf

Amdahl’s law
Used to assess theoretical effectiveness of speedup

In a nutshell: gains in speeding up a portion of a program are limited by
the fraction of time that portion is actually used

Mathematically:

For parallelization: serial bottleneck (non-parallelizable code) limits
effectiveness of vector processors

source

source

(also headlines about
India, Japan, China,
Germany, Brazil, … in the
past year)

source

OK fine.. but what about DLP
for the rest of us?

https://www.datacenterdynamics.com/en/news/new-york-dfs-to-acquire-supercomputer-to-understand-and-regulate-ai/
https://www.noaa.gov/news-release/noaa-completes-upgrade-to-weather-and-climate-supercomputer-system
https://theintercept.com/2025/02/14/irs-ai-nvidia-tax/

SIMD for multimedia
RGBA images: 8 bits/channel (32 bits total)

Audio: 8, 16, 24, or 32 bits per sample

Simplifications of SIMD for multimedia: might not need strided access,
gather/scatter, masked operations, custom vector length

→ Doesn’t typically make sense to put a powerful VPU on a processor

Enter multimedia SIMD extensions

How can smaller data widths make SIMD
functionality easier to add to CPUs?

(Doesn’t actually exist, but the letter “P” is reserved for such a thing)

Reuses floating-point registers

Packs multiple values in one register based on configuration

Ex: 64-bit register can hold 8 8-bit values, 4 16-bit values, 2 32-bit
values, or 1 64-bit value

Requires special load/store operations

Hardware support for parallel operation on each value in register

RISC-V P: packed SIMD

Packs multiple 16- or 8-bit values into 32 bit registers

ARMv6 SIMD

image source

Note: later ARM chips use NEON
(their “Advanced SIMD”

extension), storing vectors in
64- and 128-bit registers

https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions
https://developer.arm.com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology/Registers--vectors--lanes-and-elements?lang=en

Compilers are sometimes hit-or-miss when figuring out if they can
vectorize code

Multimedia applications: people can use libraries

To get more flexibility than a library, ARM provides intrinsics

Use of ARM NEON

https://developer.arm.com/documentation/102467/0201/Why-use-Neon-intrinsics-?lang=en

MMX: not an acronym, packs values in 64-bit registers, supports integer
operations only

SSE: “Streaming SIMD Extensions”, 128-bit registers, allows for floating point

AVX: “Advanced Vector Extensions”, 8x32 or 4x64 vector registers (AVX 2
adds gather, AVX 512 supports 512-bit registers)

In typical x86 fashion, operand size is fixed in the opcode (so there are
hundreds of instructions for each extension)

x86: MMX, SSE, AVX

x86 AVX-512 VNNI

Image source

Vector Neural Network
Instructions

Useful for CNNs
(Convolutional Neural

Networks)

Image source

https://www.ibm.com/topics/convolutional-neural-networks
https://en.wikichip.org/wiki/x86/avx512_vnni

From the Intel optimization manual
P 5-11 (193): Converting to SIMD chart

P 8-9 (287): Blocking (handling large matrices)

P 14-2 (390): PCMPxSTRy (see also 14-12 onward)

P 15-7 (445): Mixing SSE and AVX (YMM register)

P 15-20 (458): Data alignment and caches

P 15-24 (462): Masked loads and paging

https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html

