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Our friend the SAXPY loop

Single-precision a*x plus y

loady

for (int i = 0; i < n; i++)
y[i] = a * x[1] + y[i];
§

Basic (SISD) approach: compile
sequentially w/ branches

Can be made more efficient with:

Dynamic ILP: pipelining, OO0,
speculation, superscalar

Static ILP: loop unrolling, VLIW, etc



SIMD approach

for (int 1

O:; 1 < n; 1i++) 3
y[1] *

2 @ w] - ]

§

Compile into vector or SIMD instructions

Requires additions to ISA and hardware




SPMD approach

Single program, Multiple data — spawn many versions of same program
Note that this is a programming model, not a hardware model!

How threads are scheduled is invisible to programmer

void myThread(int n, float a, ..) 1
int 1 = tid; // thread ID
if (i < n)

yl[i] = a * x[i] + y[i]; IIEEEEEIII II:::EEIII




How can we run a SPMD program using SIMD
ideas?
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Each thread has the same instructions (but its own
Warp (Nvidia term) of threads executes in lockstep
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https://en.wikipedia.org/wiki/Warp_and_weft#/media/File:Warp_and_weft_2.jpg

®

S...P?I?2...M?2...D?T?2!? What???

Recap:
Flynn's taxonomy: describes hardware computation model
: single instruction, single data (traditional uniprocessor)
: single instruction, multiple data (ISA/hardware for DLP)
: multiple instruction, multiple data (multiprocessor)
: single program, multiple data (describes programming model)

: single instruction, multiple threads; SIMD-style computation
(hardware) to implement SPMD operation



In what ways is SIMT a more flexible model
than the SIMD processors we saw last week?

Cycle 1
Cycle 2
Cycle 3

Tt

: loady







Sparse matrices

An nxn matrix is sparse if the number m of nonzero entries is a small
fraction of the total

CSR (compressed sparse row) representation allows for easy access to
nonzero elts

CSR can be
A Row pointer co'm.puted frqm
(Rp) 0 original matrix.
Can the conversion
y be parallelized?
Column 1
index (C)
Value (V) | A




O What
about
this

MUltiplication in CSR loop?
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float multRow(int rSize, intx Cr,
float* Vr, floatx x) %
float sum = 0O;
for (int 1 = 0; i < rSize; i++) 3
sum += Vr[i] * x[Cx[i]];

$
return sum; HoEp
can be
§ turned
into
threads!

for (int r = 0; r < n; r++) 1
int rBeg = Rpl[r];
int rSize = Rp[r + 1] - Rp[r];
result[r] multRow(xSize, C[xBeg],
V[rBeg], x);



Large data

What do we do if n = 8192?? SISD approach: "\ (V) /[~

for (int 1 O; 1 < n; i++) 3

y[i] = a * x[i] + y[i];
? Vector approach: outer
loop

void myThread(int n, float a, ..) 1
int i = tid; // thread ID SPMD approach: get a

. . GPU
if (1 <n) — aka: spawn 8192 of
yl[i] = a * x[i] + y[i]; those guys on beefy

3 hardware



What's a GPU?

Graphics Processing Unit
Accelerator that originally helped CPU render 3d graphics
Predecessors: arcade game circuits, VGA controllers

Huge parallelism, programmability: attractive for largescale computations

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ Display
Vertex Fragment
Processor | Rasterizer Processor OUtP_Ut
(Programmable) (Programmable) Meazing

3D "\5\ 3D ,’:5\30 2D array of
] / 00@. / 900", 3
n TGge source "‘.‘...:5‘ ‘,,‘..08\)\ color-values

3D Graphics Rendering Pipeline: Output of one stage is fed as input of the next stage. A vertex has attributes
such as (x, y, z) position, color (RGB or RGBA), vertex-normal (ny, ny, n;), and texture. A primitive is made up of
one or more vertices. The rasterizer raster-scans each primitive to produce a set of grid-aligned fragments, by
interpolating the vertices.


https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

C;

What’'s a GPU? (CS1952y answer)

A heck of a lot of SIMT processors, arranged
in groups

Nvidia terminology: Streaming

Multiprocessors (SMs)
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https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)#/media/File:Streaming-Multiprocessor.jpg

Warp size is 32 (2°) threads
We want to run 8192 (29) threads
Do we need 256 SMs?
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Finegrained multithreading, again

(Truly more like multiwarping) SIMT multithreaded
instruction scheduler
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Texrminology + CUDA

Thread block: threads running on the same SM
ex: 512 threads in a block = 16 warps to schedule
Grid: multiple blocks combined to enable computation

Blocks can be scheduled to different SMs image source

CUDA (Compute Unified Device e

ArChiteCture): API for prog romming Thread Block Thread Block Thread Block Thread Block
Nvidia GPUs at the thread level
S L O g
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

®

SAXPY example rewritten in CUDA

// CPU side to invoke 8192 threads
__host__

// 32 blocks, 256 threads per block
myThread<<<32, 256>>>(8129, 2.0, X, Vy);

// GPU side
__device_ _
vold myThread(int n, float a, float* x, floatx y) 3
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
if (1 < n)
yl[i] = axx[i] + y[i];



