
GPUs

Our friend the SAXPY loop
Single-precision a*x plus y

for (int i = 0; i < n; i++) {
 y[i] = a * x[i] + y[i];
}

Basic (SISD) approach: compile
sequentially w/ branches

load x

load y
mul

add
store
inc i

branch

Can be made more efficient with:

Dynamic ILP: pipelining, OOO,
speculation, superscalar

Static ILP: loop unrolling, VLIW, etc

load x

load y
mul

add
store
inc i

branch
load x

load y
mul

add
store
inc i

branch

SIMD approach
for (int i = 0; i < n; i++) {
 y[i] = a * x[i] + y[i];
}

Compile into vector or SIMD instructions

Requires additions to ISA and hardware

load x

load y
mul

add
store
inc i

branch

load x

load y
mul

add
store
inc i

branch

load x

load y
mul

add
store
inc i

branch

Single program, Multiple data – spawn many versions of same program

Note that this is a programming model, not a hardware model!

How threads are scheduled is invisible to programmer

void myThread(int n, float a, …) {
 int i = tid; // thread ID
 if (i < n)
 y[i] = a * x[i] + y[i];
}

SPMD approach

load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?

? ? ?
How can we run a SPMD program using SIMD

ideas?

Single instruction, multiple threads

● Each thread has the same instructions (but its own
registers, FUs, stack pointer)

● Warp (Nvidia term) of threads executes in lockstep

SIMT

load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?

image source

Cycle 1
Cycle 2
Cycle 3

.

.

.

https://en.wikipedia.org/wiki/Warp_and_weft#/media/File:Warp_and_weft_2.jpg

Recap:

Flynn’s taxonomy: describes hardware computation model

SISD: single instruction, single data (traditional uniprocessor)

SIMD: single instruction, multiple data (ISA/hardware for DLP)

MIMD: multiple instruction, multiple data (multiprocessor)

SPMD: single program, multiple data (describes programming model)

SIMT: single instruction, multiple threads; SIMD-style computation
(hardware) to implement SPMD operation

S...P?I?...M?...D?T?!? What???

? ? ?
In what ways is SIMT a more flexible model

than the SIMD processors we saw last week?

load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?
load x

load y
mul

add
store

addrs?Cycle 1
Cycle 2
Cycle 3

.

.

.

An nxn matrix is sparse if the number m of nonzero entries is a small
fraction of the total

CSR (compressed sparse row) representation allows for easy access to
nonzero elts

Sparse matrices

A

B C

D

E F G
A B C D E F G

1 2 3 0 2 3 4

0 1 3 3 4 6Row pointer
(Rp)

Column
index (C)

Value (V)

CSR can be
computed from
original matrix.

Can the conversion
be parallelized?

float multRow(int rSize, int* Cr,
 float* Vr, float* x) {
 float sum = 0;
 for (int i = 0; i < rSize; i++) {
 sum += Vr[i] * x[Cr[i]];
 }
 return sum;
}

Multiplication in CSR
A

B C

D

E F G

A B C D E F G

1 2 3 0 2 3 4

0 1 3 3 4 6Row pointer
(Rp)

Column
index (C)

Value (V)

x0

x1

x2

x3

x4

X

for (int r = 0; r < n; r++) {
 int rBeg = Rp[r];
 int rSize = Rp[r + 1] - Rp[r];
 result[r] = multRow(rSize, C[rBeg],
 V[rBeg], x);
}

Loop
can be
turned

into
threads!

What
about

this
loop?

What do we do if n = 8192??

for (int i = 0; i < n; i++) {
 y[i] = a * x[i] + y[i];
}

Large data
SISD approach: ¯_(ツ)_/¯

Vector approach: outer
loop

void myThread(int n, float a, …) {
 int i = tid; // thread ID
 if (i < n)
 y[i] = a * x[i] + y[i];
}

SPMD approach: get a
GPU

← aka: spawn 8192 of
those guys on beefy

hardware

Graphics Processing Unit

Accelerator that originally helped CPU render 3d graphics

Predecessors: arcade game circuits, VGA controllers

Huge parallelism, programmability: attractive for largescale computations

What’s a GPU?

image source

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

A heck of a lot of SIMT processors, arranged
in groups

Nvidia terminology: Streaming
Multiprocessors (SMs)

What’s a GPU? (CS1952y answer)

image source

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)#/media/File:Streaming-Multiprocessor.jpg

? ? ?
Warp size is 32 (25) threads

We want to run 8192 (213) threads
Do we need 256 SMs?

(Truly more like multiwarping)

Finegrained multithreading, again

P&H fig. B.4.2

Why not just run all of
warp 1, then 2, then 3?

Thread block: threads running on the same SM

ex: 512 threads in a block = 16 warps to schedule

Grid: multiple blocks combined to enable computation

Blocks can be scheduled to different SMs

Terminology + CUDA

image source

CUDA (Compute Unified Device
Architecture): API for programming
Nvidia GPUs at the thread level

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

// CPU side to invoke 8192 threads
__host__
// 32 blocks, 256 threads per block
myThread<<<32, 256>>>(8129, 2.0, x, y);

// GPU side
__device__
void myThread(int n, float a, float* x, float* y) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n)
 y[i] = a*x[i] + y[i];
}

SAXPY example rewritten in CUDA

