)

GPUs

WHAT ¢IvES PEOPLE
FEELINGS OF POWER

MONEY
STATUS

Doing some
weird math
on GPU 20X
faster than
CPU

ooooooo

e @ @ e e =© "%we |-

®

Our friend the SAXPY loop

Single-precision a*x plus y

loady

for (int i = 0; i < n; i++)
y[i] = a * x[1] + y[i];
§

Basic (SISD) approach: compile
sequentially w/ branches

Can be made more efficient with:

Dynamic ILP: pipelining, OO0,
speculation, superscalar

Static ILP: loop unrolling, VLIW, etc

SIMD approach

for (int 1

O:; 1 < n; 1i++) 3
y[1] *

2 @ w] -]

§

Compile into vector or SIMD instructions

Requires additions to ISA and hardware

SPMD approach

Single program, Multiple data — spawn many versions of same program
Note that this is a programming model, not a hardware model!

How threads are scheduled is invisible to programmer

void myThread(int n, float a, ..) 1
int 1 = tid; // thread ID
if (i < n)

yl[i] = a * x[i] + y[i]; IIEEEEEIII II:::EEIII

How can we run a SPMD program using SIMD
ideas?

Warp

SIMT

.....
N \
Nt

gt gl

R

Single instruction, multiple threads

2Say eNage
T €

i

O]
O
o
S
O
%)
)
Op
O
1S

g T

...‘.-4

ond

%

— N
9 o
G 2
>
O O

Each thread has the same instructions (but its own
Warp (Nvidia term) of threads executes in lockstep

registers, FUs, stack pointer)

™
Q9
)
>
O

https://en.wikipedia.org/wiki/Warp_and_weft#/media/File:Warp_and_weft_2.jpg

®

S...P?I?2...M?2...D?T?2!? What???

Recap:
Flynn's taxonomy: describes hardware computation model
: single instruction, single data (traditional uniprocessor)
: single instruction, multiple data (ISA/hardware for DLP)
: multiple instruction, multiple data (multiprocessor)
: single program, multiple data (describes programming model)

: single instruction, multiple threads; SIMD-style computation
(hardware) to implement SPMD operation

In what ways is SIMT a more flexible model
than the SIMD processors we saw last week?

Cycle 1
Cycle 2
Cycle 3

Tt

: loady

Sparse matrices

An nxn matrix is sparse if the number m of nonzero entries is a small
fraction of the total

CSR (compressed sparse row) representation allows for easy access to
nonzero elts

CSR can be
A Row pointer co'm.puted frqm
(Rp) 0 original matrix.
Can the conversion
y be parallelized?
Column 1
index (C)
Value (V) | A

O What
about
this

MUltiplication in CSR loop?

A

X

Row pointer
(Rp)

Column
index (C)

Value (V)

|

’_

x0

x1

x2

x3

x4

3 O

|

float multRow(int rSize, intx Cr,
float* Vr, floatx x) %
float sum = 0O;
for (int 1 = 0; i < rSize; i++) 3
sum += Vr[i] * x[Cx[i]];

$
return sum; HoEp
can be
§ turned
into
threads!

for (int r = 0; r < n; r++) 1
int rBeg = Rpl[r];
int rSize = Rp[r + 1] - Rp[r];
result[r] multRow(xSize, C[xBeg],
V[rBeg], x);

Large data

What do we do if n = 8192?? SISD approach: "\ (V) /[~

for (int 1 O; 1 < n; i++) 3

y[i] = a * x[i] + y[i];
? Vector approach: outer
loop

void myThread(int n, float a, ..) 1
int i = tid; // thread ID SPMD approach: get a

. . GPU
if (1 <n) — aka: spawn 8192 of
yl[i] = a * x[i] + y[i]; those guys on beefy

3 hardware

What's a GPU?

Graphics Processing Unit
Accelerator that originally helped CPU render 3d graphics
Predecessors: arcade game circuits, VGA controllers

Huge parallelism, programmability: attractive for largescale computations

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ Display
Vertex Fragment
Processor | Rasterizer Processor OUtP_Ut
(Programmable) (Programmable) Meazing

3D "\5\ 3D ,’:5\30 2D array of
] / 00@. / 900", 3
n TGge source "‘.‘...:5‘ ‘,,‘..08\)\ color-values

3D Graphics Rendering Pipeline: Output of one stage is fed as input of the next stage. A vertex has attributes
such as (x, y, z) position, color (RGB or RGBA), vertex-normal (ny, ny, n;), and texture. A primitive is made up of
one or more vertices. The rasterizer raster-scans each primitive to produce a set of grid-aligned fragments, by
interpolating the vertices.

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

C;

What’'s a GPU? (CS1952y answer)

A heck of a lot of SIMT processors, arranged
in groups

Nvidia terminology: Streaming

Multiprocessors (SMs)

SFU

Processor 0

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

SFU

Processor 6

Processor 7

Shared Memory

Instruction Fetch Unit

Instruction and Data Caches (L1)

Image source

SFU

[[Processoro |

[[Processoro |

[[Processoro |

[[Processoro |

[[Processoro]

[[Processoro |

[[Processoro |

[[Processor1 |

=

[[Processor 1 |

==n

=

=n

=

[[Processor2]

[Processor2]

[[Processor2]

[Processor2]

[[Processor2]

[Processor2]

[[Processor2]

[[Processora |

[Processars |
SFU

[[Processors |

[rrocmssr?]

[[Processor3]

SFU

[Processora |

[Processors |
SFU

[[Processors |

[Frocessor7]

=3

SFU

[[Processora |

[Processars |
SFU

[[Processors |

[Frocessor?]

[Processors]

SFU

[[Processora |

[Processors |
SFU

[[Processors |

==

=3

SFU

[[Processora |

[Processars |
SFU

[[Processors |

[Frocessar?]

=

SFU

[Frocewors]

[[Processora |

[[processors]
SFU

[[Processors |

=

SFU

[[Processora |

[Processars |
SFU

[[Processors |

[rrocesart]

=3

[[Processoro |
sFU [[Processor |
[[Processor2]
[[Processor3]

[[Processora |

[Processars |
SFU

[[Processors |

=

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

SFU

[[Processoro |

[Froceoro]

[[Processoro]

[[Processoro |

[[Processoro |

[[Processoro |

[Frocesoro]

[Frocemor1]

==

[Frocemor1]

==

[Frocemor1]

==

[Frocemor1 |

[[Processor2]

[Processor2]

[[Processor2]

[Processor2]

===

[Processor2]

===

[[Processora |

[Processars |
SFU

[[Processors |

[Frocessr?]

=3

SFU

(==

[rroceseers |
SFU

[Frocessors]

=

=3

SFU

[[Processora |

[Processars |
SFU

[[Processors |

[Frocessr?]

[Frocessors]

SFU

[Froceors]

[rrocesmers |
SFU

[Frocessors]

==

=3

SFU

[[Processora |

[Processars |
SFU

[[Processors |

[Frocessr?]

=

SFU

=3

[[Processora |

[oaz]
SFU

=

[Frocssor?]

SFU

[[Processora |
U [Processars |
[[Processors |
[rrocesor7]

[Frocessors]

[[Processoro |
U [[Processor1 |
[Processor2]
=2

[[Processora |

[Processars |
SFU

[[Processors |

[Frocssor?]

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Shared Memory

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction Fetch Unit

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

Instruction and Data Caches (L1)

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)#/media/File:Streaming-Multiprocessor.jpg

Warp size is 32 (2°) threads
We want to run 8192 (29) threads
Do we need 256 SMs?

®

Finegrained multithreading, again

(Truly more like multiwarping) SIMT multithreaded
instruction scheduler

time
| N I S S I I |
warp 8 instruction 11

YYVY Y Y Y YV YYYYYIYYY

Why ot justrun il o E -

5 { Y [F S S S S [[N [[| S |
warp I then 2, then 3 warp 3 instruction 95

YYY Y Y Y Y YYYY Y Y Y VY

I I I I I I I I Ay |
warp 8 instruction 12
YYY Y Y YYYYYYYY VY Y
N [N I I I I I I I O N O A i |
warp 3 instruction 96

YYY Y Y Y Y Y Y Y Y YV YVY

Y

Texrminology + CUDA

Thread block: threads running on the same SM
ex: 512 threads in a block = 16 warps to schedule
Grid: multiple blocks combined to enable computation

Blocks can be scheduled to different SMs image source

CUDA (Compute Unified Device e

ArChiteCture): API for prog romming Thread Block Thread Block Thread Block Thread Block
Nvidia GPUs at the thread level
S L O g

IIIHIn RECECRLT ALY RSN

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

®

SAXPY example rewritten in CUDA

// CPU side to invoke 8192 threads
__host__

// 32 blocks, 256 threads per block
myThread<<<32, 256>>>(8129, 2.0, X, Vy);

// GPU side
__device_ _
vold myThread(int n, float a, float* x, floatx y) 3
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
if (1 < n)
yl[i] = axx[i] + y[i];

