Vector processors

oooooo

e O e e & e

®

Vector processors: summary so far

Place data in vector registers for computation
Run same operation on every element of a vector
Operations:
Load and store between memory and vector register
Set vector length
Computations (moth/logic, reductions, masked operotions)

Today: what about the hardware?

What about these loops?

for (int i = 0; i < 64; i++) 3§

if (x[1i] != 0) 3
y[i] = a *x x[1];
$
$

Masked/conditional instructions:

1li sO, a

vle32.v vl1, sl

vle32.v v2, s2

vmsne.vi vO, vi1, 0O

vO[1i] = x[1] =021 : 0
vmul.vx v2, v1l, sO, vO.t
vse32.v vl, s2

for (int 1 = 0; 1 < n; i++) 3
X[m[i]] = X[m[i]] + Y[n[1]];
§

Gather: collect all valid X[m[i]], Y[n[i]] in
smaller vectors

Scatter: put the data back into X[ml[i]],

Y[nlil]

In RVV: indexed load/stores, also the
vrgather instruction

®

Compact non-zexo example (why?)

Page 82 of RVV spec (provided code also strip mines)

size_t compact_non_zero(
size_t n,
const int* 1in,
intx out) 3
size t 1;
size_t count = 0;
int *p = out;
for (i=0; i<n; i++) 3
const int v = xin++;
if (v !'= 0)
*p++ = V;

14

§

return (size_t) (p - out);

vle32.v v8, (al)

vmsne.vi vO, v8, 0

vcpop.m ab, voO

viota.m v16, vO

vsll.vi v16, vi16, 2, vO.t
vsuxei32.v v8, (a2), vil6, vO.t

w7 fo Jo Frsfo Je J2 Jo

https://github.com/riscvarchive/riscv-v-spec/releases/tag/v1.0

Matxrix multiplies

for (int 1 = 0O;
for (int j
ATi][7

1 < 128;

= 0; j < 128; j++) %

= 0

i++) 3

for (int k = 0; k < 128; k++) 3
A[i][j] += B[i][k] = C[k][7]

§
§

B[0][0..127]

B[1][0..127]

B[2][0..127]

B[3][0..127]

clo][o0..127]

c[1][0..127]

cl2][o..127]

c[3][0..127]

Strided loads/stores

7.5. Vector Strided Instructions

Vector strided loads and

vd destination, rsl base
vd; (rsl), rs2,
vd, (rsl), rs2,
vd, (rsl), rs2,
vd; (rsl), rs2,

vlse8.v

vlsel6.v
vlse32.v
vlseb4.v

stores

address, rs2 byte stride

vm
vm
vm
vm

#

#
#
#

8-bit strided load
16-bit strided load
32-bit strided load
64-bit strided load

vs3 store data, rsl base address, rs2 byte stride

vsse8.v

vssel6.v
vsse32.v
vsseb4.v

VSs3;
vs3,
vs3,
vs3,

(rs1); rs2;
(EST),. rs2;
(psl), rs2,
(rs1); rs2;

#

#
#
#

8-bit strided store
16-bit strided store
32-bit strided store
64-bit strided store

®

Compiler effectiveness

Completely Partially Not
Processor Compiler vectorized vectorized vectorized

CDC CYBER 205 VAST-2 V2.21 62 5 33

nvex C-series (

CFT77 V3.0

CFT V1.15
Cray-2 CFT2 V3.1a 27 1 72
ETA-10 FTN 77 V1.0 62 7 31
Hitachi S810/820 FORT77/HAP V20-2B 67 -+ 29
IBM 3090/VF VS FORTRAN V24 52 -+ +
NEC SX/2 FORTRAN77 / SX V.040 66 5 29

Figure G.9 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
nels. For each processor we indicate how many loops were completely vectorized, par-
tially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.

Compiler < Programmexr

Operations executed Operations executed

Benchmark in vector mode, in vector mode, Speedup from

name compiler-optimized with programmer aid hint optimization

BDNA 96.1% 97.2% 1.52 H&P Fig. 4.7
MG3D 95.1% 94.5% 1.00

FLO52 91.5% 88.7% N/A

ARC3D 91.1% 92.0% 1.01

SPEC77 90.3% 90.4% 1.07

MDG 87.7% 94.2% 1.49

TRFD 69.8% 73.7% 1.67

DYFESM 68.8% 65.6% N/A

79.9%
75.1%

A[9]| [B[9]
A[8]| |B[8]
A[7] B[7]
A[6]| |[B[6]
A[s1| |B[5]
A[4]| |B[4]
A[31| |B[3]
aAr21| |Br2]
A[1]| |B[1]
cro)

Simple approach: single
pipelined FU

Upsides:

Less hardware

Smaller clock cycle

One result/cycle

Data within vector assumed independent*: no
hazards

Moxe efficient approach: multiple FUs

ar81| |[Brsi1| |ar91| [Br9]

Al4] B[4]| |[A[5] B[5]| |[A[6] B[6]| |A[7] B[7]

I T TR T T T
/

Why not just have 64
unpipelined FUs?

Lanes

Lane 0

Vector
registers:

elements
0,4,8,...

Lane 1 Lane 2

Vector Vector
registers: registers:
elements elements

155595 o 2,6,10,...

Lane 3

Vector
registers:
elements

L. iy OO £

Vector load-store unit

Theory: if we can start a load every cycle,
eventually, we get a throughput of 1 piece of
data/cycle
Practice: how do we start a load every cycle if
loads take multiple cycles?

Memoxry banks

How do strided accesses complicate the
advantages of memory banks?

Measuring performance: convoys and chimes

Convoy: set of vector instructions that can potentially execute
together

Chime: time it takes to execute a convoy

vlies2.v v0O, s

vmul.vx vl, vO, tO

vle32.v v2, s2

=Tala Approximation of runtime for this

vse32.v v3, t1 vector machine: 3 chimes (~3 *

vlen/lanes clock cycles)
What complicates this metric?

®

Measuring performance: chaining

What does it look like to execute this code w/ one load/store unit
and one ALU/mul unit?

vle32.v v0O, sl
vmul.vx v1, vO@, t0O
vle32.v v2, s2
vadd.vv v3, v1, v2
vse32.v v3, tl

Startup, dead time

Amdahl’'s law

Used to assess theoretical effectiveness of speedup

In a nutshell: gains in speeding up a portion of a program are limited by
the fraction of time that portion is actually used

Mathematically: S () 1
latency \S) =

1-p)+2

For parallelization: serial bottleneck (non-parallelizable code) limits
effectiveness of vector processors

Cray-1

Axrchitecture

image source

AN
A

Memory

((A0)+(AK)

Vector Registers

S3

Logical
Add

Vector
Functional
Units

Vi

Vk

¥i

!

774

Vector
Congrol

T00

{A0) through

T77

Yk

Vi

&

Add

Floating
1]point

v

3 Functional

Units

Logica

Add

((An) + jkm)

20)) 800 /l A

| through
B77

Address Registers

A6

Exchange

Control
]

Vector
Control
l Vi l

Scalar
Functional
units

Ak

Multip]
Add

({Ah) + | jkm)

A

'

3 1

1

1 '

oo o 1

_— '

1

'

— 1
17

Instruction

Address
Functional
Units

https://ed-thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-1-HRM.html

