Data-level
parallelism

oooooo

e O e e & e

Parallelism so far

Our view of ILP (implementation + use) has o
largely been application-agnostic

Thread-level parallelism is also largely
application-agnostic*, but performance
varies by workload

What can we gain if our workload itself
exhibits parallelism?

Percent of Total Issue Cycles

oo i
80 [

70 5 E

®

Dean M. Tullsen, Susan J. Eggers, and Henry M.
Levy. 1995. Simultaneous multithreading:

maximizing on-chip parallelism. In

Proceedings of the 22nd annual international
symposium on Computer architecture (ISCA
'95). Association for Computing Machinery,

k, NY, USA, 392-403

New

Yor

eqntott

dljdp2
dljsp2

@:
3
2

m
m

Applications

nas’ I 277 7 77 77 P 7 7 7 7

su2cor

sSwm

- link

5
e

tomcatv

composite

E memory conflict
m long fp

short fp

long integer

m short integer
load delays
control hazards
% branch misprediction
E dcache miss

I]]] icache miss

dtlb miss

B oo miss

- processor busy

https://dl.acm.org/doi/abs/10.1145/223982.224449

What are examples of workloads that exhibit
parallelism?

Workloads + theixr HW support

Basic sequential ILP techniques

programs

Task-level parallel ILP, SMT, multicore, request-level
workloads parallelism (OS, servers, DB...)

Data-level parallel ILP and SMT can help
workloads vector processors and GPUs

Matrix operations, some
loops (scientific,
multimedia, Al/ML
applications) _®

IAXPY loop

“integer a*x + y” (also: saxpy, daxpy for single precision/doubles)

for (int 1 = 0; 1 < n; i++) 3
y[i] = a x x[1i] + y[i]; // aX + Y

§
With (static or dynamic) ILP techniques:

SIMD

“Single instruction, multiple data”
Perform same operation on different (independent) data in parallel

Requires additions to ISA (and compiler/programmer) and hardware

What advantages might SIMD operation have
over basic ILP techniques?

Flynn's taxonomy

Single

Multiple

Single

Multiple

SISD

(More or less) what we've
been studying so far

MISD

Doesn’t really exist
commercially

SIMD

Different data goes into
FUs performing same
operation at same time

MIMD

Independent processing
units operating on
independent data

O)

Vectoxr axrchitectures

Hail from the 60s, popular in the the
supercomputers of the 70s (Cray)

Place data in vector registers for
computation

Cray-1(1976): 8 vector registers of
64 values each

Vector loads/stores can be pipelined:
amortize latency

SIMD operation, but different from a
“SIMD unit”... we’ll come back to this

i @
image source

https://en.wikipedia.org/wiki/Cray-1#/media/File:Science_Museum_20180227_132902_(49362732462).jpg

®

Vector instructions (RISCV V ext)

Suffixes: .vv (vector-vector), .vx (vector-scalar), .vi (vector-immediate)

Lots of operations

At the minimum: load/store, operations on vectors
Arithmetic/logical/shift: vadd, vsub, vrsub, etc
Compare: vmseq, vmsne, vms{l,g}{te}[u]
Max/min: vmin[u], vmax[u]
Multiply-add (like dot product): vmacc, vnmsac, vimadd, vnmsub

Reductions: vredsum, vredand, vredor, vredxor

https://github.com/riscvarchive/riscv-v-spec/blob/master/v-spec.adoc

®

Non-vectorized IAXPY loop

Y =aX+Y(IX|, Y] = 64)

11 sO, a # sO = a

addi t0O, s1, 256 # t0 = X + (64 x 4) (end address)
loop: 1w t1, O(sl) # t1 = x[1i]

mul t1, t1, sO # x[1i] = x[1i] * a

lw t2, 0(s2) # t2 = y[1i]

add t2, t2, t1 # t2 = x[1i] * a + y[1]

sw t2, 0(s2) # y[i] = t2 (x[1] * a + y[1i])

addi s1, sl1, 4 # increment xx*

addi s2, s2, 4 # increment yx

bne sl1, tO, loop

Vectorized IAXPY loop

11 sO, a

addi t0O, si1, 256
loop: 1w t1, 0(sl)
mul t1, t1, sO

lw t2, 0(s2)

add t2, t2, t1

sw t2, 0(s2)

addi si1, si1, 4
addi s2, s2, 4
bne s1, t0O, loop

11 s0,
vle32.
vle32.

a
v vO,
v vl,

vmul.vx vO,
vadd.vv v1,

vse32.

v vl,

OR JUST:

1i s0O,
vle32.
vle32.
vimacc.
vse32.

a
v vO,
v vl,
vx Vi1,
v vl,

sl # vO = X

s2 # vl =Y

v, sO # X = a * X

v, v1 #Y =a * X + Y
s2

What assumptions are we
making about our data
here?

sl
s2
sO, vO #Y =a « X + Y
s2

C;

How to handle a loop like this?

for (int i = 0; i < 50; i++) §

vsetvli tO,

sl, e32

vl, t0 = min(MVL, si1)

y[i] = a * x[1] + y[1i]; 1i sO, a
1 vlie32.v vO,
Used in vle32.v vi,
vmul.vx vO,
Valueofj 0 1 ‘ 2 3 ' ‘ n/MVL Vadd.vv V:I.,
l‘; Vse32.V V:I"
Rangeofi 0 m (Mm+MVL) (m+2xMVL) Bn-MVL)
(m=1) (m=1) (m=1) (m=1) —1)

. An=
+MVL +2xMVL +3xMVL vectorized inner loop

outer loop

sl
s2
vO, sO
vo, vl
s2

What about these loops?

for (int i = 0; i < 64; i++) 3§

if (x[1i] != 0) 3
y[i] = a *x x[1];
$
$

Masked/conditional instructions:

1li sO, a

vle32.v vl1, sl

vle32.v v2, s2

vmsne.vi vO, vi1, 0O

vO[1i] = x[1] =021 : 0
vmul.vx v2, v1l, sO, vO.t
vse32.v vl, s2

for (int 1 = 0; 1 < n; i++) 3
X[m[i]] = X[m[i]] + Y[n[1]];
§

Gather: collect all valid X[m[i]], Y[n[i]] in
smaller vectors

Scatter: put the data back into X[ml[i]],

Y[nlil]

In RVV: indexed load/stores, also the
vrgather instruction

Matxrix multiplies

for (int 1 = 0O;
for (int j
ATi][7

1 < 128;

= 0; j < 128; j++) %

= 0

i++) 3

for (int k = 0; k < 128; k++) 3
A[i][j] += B[i][k] = C[k][7]

§
§

B[0][0..127]

B[1][0..127]

B[2][0..127]

B[3][0..127]

clo][o0..127]

c[1][0..127]

cl2][o..127]

c[3][0..127]

Strided loads/stores

7.5. Vector Strided Instructions

Vector strided loads and

vd destination, rsl base
vd; (rsl), rs2,
vd, (rsl), rs2,
vd, (rsl), rs2,
vd; (rsl), rs2,

vlse8.v

vlsel6.v
vlse32.v
vlseb4.v

stores

address, rs2 byte stride

vm
vm
vm
vm

#

#
#
#

8-bit strided load
16-bit strided load
32-bit strided load
64-bit strided load

vs3 store data, rsl base address, rs2 byte stride

vsse8.v

vssel6.v
vsse32.v
vsseb4.v

VSs3;
vs3,
vs3,
vs3,

(rs1); rs2;
(EST),. rs2;
(psl), rs2,
(rs1); rs2;

#

#
#
#

8-bit strided store
16-bit strided store
32-bit strided store
64-bit strided store

®

Compiler effectiveness

Completely Partially Not
Processor Compiler vectorized vectorized vectorized

CDC CYBER 205 VAST-2 V2.21 62 5 33

nvex C-series (

CFT77 V3.0

CFT V1.15
Cray-2 CFT2 V3.1a 27 1 72
ETA-10 FTN 77 V1.0 62 7 31
Hitachi S810/820 FORT77/HAP V20-2B 67 -+ 29
IBM 3090/VF VS FORTRAN V24 52 -+ +
NEC SX/2 FORTRAN77 / SX V.040 66 5 29

Figure G.9 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
nels. For each processor we indicate how many loops were completely vectorized, par-
tially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.

