
Assessing vector
processors

Vector processors: summary so far
Place data in vector registers for computation

Run same operation on every element of a vector

Necessary operations:

Load and store data between memory and vector register

Set vector length (setvl)

Computations on vectors (add, multiply, reduce, compare, merge…)

Clarification: mask encoding
source

https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#sec-vector-mask-encoding

Mask example
for (int i = 0; i < 64; i++) {

if (x[i] != 0) {
y[i] = a * x[i];

}
}

li s0, a
vld v1, s1
vld v2, s2
vmsne v0, v1, 0 # v2[i] = x[i] != 0 ? 1 : 0
vmul.vx v1, v1, s0 # x[i] = a * x[i]
vmerge v2, v2, v1, v0 # y[i] = v2[i] ? x[i] : y[i]
vmul.vx v2, v1, s0, v0.t
vst v1, s2

Simple approach: single
pipelined FU

H&P fig. 4.4

Upsides:
● Less hardware
● Smaller clock cycle
● One result/cycle
● Data within vector assumed independent: no

hazards

More efficient approach: multiple FUs

H&P fig. 4.4

Why not just have 64
unpipelined FUs?

Lanes

H&P fig. 4.5

? ? ?
Theory: if we can start a load every cycle,

eventually, we get a throughput of 1 piece of
data/cycle

Practice: how do we start a load every cycle if
loads take multiple cycles?

Memory banks

Complication of memory access
How do we vectorize this code?
for (int i = 0; i < 100; i++) {
 for (int j = 0; j < 100; j++) {
 A[i][j] = 0;
 for (int k = 0; k < 100; k++) {
 A[i][j] += B[i][k] * C[k][j]
 }
 }
}

Strided loads/stores

? ? ?
How do strided accesses complicate the

advantages of memory banks?

Not all vector-like memory accesses use every element

for (int i = 0; i < n; i++) {
 X[m[i]] = X[m[i]] + Y[n[i]];
}

Solution: gather-scatter

Gather: collect all valid X[m[i]], Y[n[i]] in smaller vectors

Scatter: put the data back into X[m[i]], Y[n[i]]

In RISCV V: indexed load/stores, also the vrgather instruction

Also useful for avoiding computations on 0-valued elements (why? where?)

Sparse accesses

What does it look like to execute this code w/ one load/store unit
and one ALU/mul unit?

vld v0, s1
vmul.vx v1, v0, t0
vld v2, s2
vadd.vv v3, v1, v2
vst v3, t1

Measuring performance: chaining

Convoy: set of vector instructions that can potentially execute
together
Chime: time it takes to execute a convoy
vld v0, s1
vmul.vx v1, v0, t0
vld v2, s2
vadd.vv v3, v1, v2
vst v3, t1

Measuring performance: convoys and chimes

Approximation of runtime for this
vector machine: 3 chimes (~3 * vlen

clock cycles)
What complicates this metric?

Startup, dead time

Amdahl’s law
Used to assess theoretical effectiveness of speedup

In a nutshell: gains in speeding up a portion of a program are limited by
the fraction of time that portion is actually used

Mathematically:

For parallelization: serial bottleneck (non-parallelizable code) limits
effectiveness of vector processors

Compiler effectiveness

Cray-1
Architecture

image source

https://ed-thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-1-HRM.html

