Assessing vector
processors
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Vector processors: summary so far

Place data in vector registers for computation

Run same operation on every element of a vector

Necessary operations:
Load and store data between memory and vector register
Set vector length (setvl)

Computations on vectors (odd, multiply, reduce, compare, merge...)



Clarification: mask encoding

5.3.1. Mask Encoding

source
Where available, masking is encoded in a single-bit vm field in the instruction ( inst[25] ).

vm Description
0 vector result, only where v0.mask([i] = 1
1 unmasked

Vector masking is represented in assembler code as another vector operand, with .t indicating that the operation occurs when ve.mask[i] is

1 (t for "true"). If no masking operand is specified, unmasked vector execution ( vm=1 ) is assumed.

vop.v* vl, v2, v3, vO.t # enabled where v@.mask[i]=1, vm=0
vop.v¥* vl, v2, v3 # unmasked vector operation, vm=1
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https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#sec-vector-mask-encoding

Mask example

for (int 1 = 0; 1 < 64; i++) 3
if (x[1] !'= 0) 3
y[i] = a * x[1];

§

11 sO, a

vld v1, sl

vld v2, s2

vmshe vO, vl1, O # v2[i] = x[1] !'= 0 2?2 1 : 0
YRy s 5= e 5]
vmul.vx v2, vl, s0O, vO.t

vst vl, s2



A[9]| [B[9]
A[8]| |B[8]
A[7] B[7]
A[6]| |[B[6]
A[s1| |B[5]
A[4]| |B[4]
A[31| |B[3]
aAr21| |Br2]
A[1]| |B[1]

Simple approach: single
pipelined FU

Upsides:

Less hardware

Smaller clock cycle

One result/cycle

Data within vector assumed independent: no
hazards




Moxe efficient approach: multiple FUs

ar81| |[Brsi1| |ar91| [Br9]

Al4] B[4]| |[A[5] B[5]| |[A[6] B[6]| |A[7] B[7]
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Why not just have 64
unpipelined FUs?




Lanes

Lane 0

Vector
registers:

elements
0,4,8,...

Lane 1 Lane 2

Vector Vector
registers: registers:
elements elements

155595 o 2,6,10,...

Lane 3

Vector
registers:
elements

L. iy OO £

Vector load-store unit




Theory: if we can start a load every cycle,
eventually, we get a throughput of 1 piece of
data/cycle
Practice: how do we start a load every cycle if
loads take multiple cycles?



Memoxry banks




C;

Complication of memoxry access

How do we vectorize this code?
for (int 1 = 0; 1 < 100; i++) 3
for (int j = 0; j < 100; j++) 3§
ALi][]] = 0;
for (int k = 0; k < 100; k++) 3
A[i][j] += B[1i][k] = C[k][]]
§



Strided loads/stores

7.5. Vector Strided Instructions

# Vector strided loads and

# vd destination, rsl base
vd; (rsl), rs2,
vd, (rsl), rs2,
vd, (rsl), rs2,
vd; (rsl), rs2,

vlse8.v

vlsel6.v
vlse32.v
vlseb4.v

stores

address, rs2 byte stride

vm
vm
vm
vm

#

#
#
#

8-bit strided load
16-bit strided load
32-bit strided load
64-bit strided load

# vs3 store data, rsl base address, rs2 byte stride

vsse8.v

vssel6.v
vsse32.v
vsseb4.v

VSs3;
vs3,
vs3,
vs3,

(rs1); rs2;
(EST),. rs2;
(psl), rs2,
(rs1); rs2;

#

#
#
#

8-bit strided store
16-bit strided store
32-bit strided store
64-bit strided store




How do strided accesses complicate the
advantages of memory banks?



Spaxrse accesses

Not all vector-like memory accesses use every element

for (int 1 = 0; 1 < n; i++) 3
XIm[i]] = X[m[i]] + Y[n[i]];

§

Solution: gather-scatter
Gather: collect all valid X[m][i]], Y[n[i]] in smaller vectors
Scatter: put the data back into X[ml[i]], Y[n[i]]

In RISCV V: indexed load/stores, also the vrgather instruction

Also useful for avoiding computations on 0-valued elements (why? where?)
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Measuring performance: chaining

What does it look like to execute this code w/ one load/store unit
and one ALU/mul unit?

vld vO, si1
vmul.vx v1, vO@, t0O
vld v2, s2
vadd.vv v3, v1, v2
vst v3, tl



Measuring performance: convoys and chimes

Convoy: set of vector instructions that can potentially execute
together

Chime: time it takes to execute a convoy

vlid v0, s

vmul.vx vl, vO,6 t0

vld v2, s2

=Tala Approximation of runtime for this

vet v3, tl1 vector machine: 3 chimes (~3 * vien
clock cycles)

What complicates this metric?




Startup, dead time




Amdahl’'s law

Used to assess theoretical effectiveness of speedup

In a nutshell: gains in speeding up a portion of a program are limited by
the fraction of time that portion is actually used

Mathematically: S () 1
latency \S) =

1-p)+2

For parallelization: serial bottleneck (non-parallelizable code) limits
effectiveness of vector processors
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Compiler effectiveness

Completely Partially Not
Processor Compiler vectorized vectorized vectorized

CDC CYBER 205 VAST-2 V2.21 62 5 33

nvex C-series (

CFT77 V3.0

CFT V1.15
Cray-2 CFT2 V3.1a 27 1 72
ETA-10 FTN 77 V1.0 62 7 31
Hitachi S810/820 FORT77/HAP V20-2B 67 -+ 29
IBM 3090/VF VS FORTRAN V24 52 -+ +
NEC SX/2 FORTRAN77 / SX V.040 66 5 29

Figure G.9 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
nels. For each processor we indicate how many loops were completely vectorized, par-
tially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.
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https://ed-thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-1-HRM.html

