
(real architecture)PARALLELISM IN
ARCHITECTURE

Vitruvius
Roman architect
Author of De architectura, libri decem
Importance of geometric principles in
architectural design

image source

https://www.thefamouspeople.com/profiles/vitruvius-34320.php

Opus Quadratum

Squared-off blocks
are placed in parallel
Alternating direction

of placement
improves strength

Different designs can
be created, for
aesthetics

image source

https://en.wikipedia.org/wiki/Opus_quadratum

Used to improve performance (not aesthetics/strength)

We can’t really “see” it but spend all of our time designing
for it

Comes from an observation about applications (rather
than geometric principles):

Data-level parallelism (DLP) means there are pieces
of data that can be computed on at the same time

Task-level parallelism (TLP) means there are
independent tasks that can execute at the same time

Contrast with parallelism in computer architecture

Instruction-level: running instructions at the same time – moderate
exploitation of data-level parallelism

Thread-level: hardware support for switching between tasks

Hardware approaches for DLP: (such as vector machines and GPUs)
apply single instruction to multiple pieces of data in parallel

Request-level: handling independent transactions (such as in servers,
operating systems, databases)

Hardware support for parallelism

Flynn’s taxonomy

Single Multiple

Single

SISD MISD

Multiple

SIMD MIMD

(More or less) what
we’ve been studying so

far

Doesn’t really exist
commercially

Different data goes
into FUs performing

same operation

Independent
processing units

computing on
independent data

What’s the point of exploiting DLP?
(In what applications might we be

applying the same operation to different
pieces of data?)

???

What advantages might SIMD-style
computing have?

???

Hail from the 60s, popular in the the
supercomputers of the 70s (Cray)

Place data in vector registers for
computation

Cray-1 (1976): 8 vector registers of
64 values each

Vector loads/stores can be pipelined:
amortize latency

Vector architectures

image source

https://en.wikipedia.org/wiki/Cray-1#/media/File:Science_Museum_20180227_132902_(49362732462).jpg

Suffixes: .vv (vector-vector), .vx (vector-scalar), .vi (vector-immediate)

Arithmetic/logical/shift: vadd, vsub, vrsub, etc

Compare: vmseq, vmsne, vms{l,g}{t,e}[u]

Max/min: vmin[u], vmax[u]

Multiply-add (like dot product): vmacc, vnmsac, vmadd, vnmsub

Merge (set based on mask): vmerge

Reductions: vredsum, vredand, vredor, vredxor

Vector instructions (RISC-V V extension)

source

https://github.com/riscv/riscv-v-spec/blob/v1.0/v-spec.adoc#11-vector-integer-arithmetic-instructions

Y = aX + Y

assume X is in s1, Y is in s2
li s0, a # s0 = a
addi t0, s1, 256 # t0 = X + (64 * 4) (end address)
loop:
lw t1, 0(s1) # t1 = x[i]
mul t1, t1, s0 # x[i] = x[i] * a
lw t2, 0(s2) # t2 = y[i]
add t2, t2, t1 # y[i] = x[i] * a + y[i]
addi s1, s1, 4 # i++
addi s2, s2, 4 # i++
bne s1, t0, loop

Non-vector example of vectorizable code

Compare to vectorized version
Y = aX + Y

li s0, a
addi t0, s1, 256
loop:
lw t1, 0(s1)
mul t1, t1, s0
lw t2, 0(s2)
add t2, t2, t1
addi s1, s1, 4
addi s2, s2, 4
bne s1, t0, loop

li s0, a
vld v0, s1 # v0 = X
vld v1, s2 # v1 = Y
vmul.vx v0, v0, s0 # X = a * X
vadd.vv v1, v0, v1 # Y = a * X + Y
vst v1, s2

OR JUST:

li s0, a
vld v0, s1
vld v1, s2
vmacc.vx v1, s0, v0 # Y = a * X + Y
vst v1, s2

What assumption are we
making about our data

here?

for (int i = 0; i < 50; i++) {

 y[i] = a * x[i] + y[i];

}

How to handle a loop like this?
setvl t0, s1
vl, t0 = min(MVL, s1)
li s0, a
vld v0, s1
vld v1, s2
vmul.vx v0, v0, s0
vadd.vv v1, v0, v1
vst v1, s2

Compiler generating vectorized code when the # of loop iterations is
unknown

Strip mining

start = 0;
vlen = (n % MVL)
for (int j = 0; j < n / MVL; j++) {

for (int i = start; i < start + vlen; i++) {
y[i] = a * x[i] + y[i];

}
start += vlen;
vlen = MVL;

}
this loop can be vectorized

H&P fig. 4.6

for (int i = 0; i < 64; i++) {
if (x[i] != 0) {

y[i] = a * x[i];
}

}

What purpose does vmerge serve?

What if we could tell the processor to
only do this operation for indices i

where x[i] != 0?

li s0, a
vld v0, s1
vld v1, s2
vmsne v2, v0, 0 # v2[i] = x[i] != 0 ? 1 : 0
vmul.vx v0, v0, s0 # x[i] = a * x[i]
vmerge v1, v1, v0, v2 # y[i] = v2[i] ? x[i] : y[i]
vst v1, s2

Vector extensions are a really good example of the interplay between
ISA, hardware, and compiler

How should the ISA support efficient hardware design?

What operations does the ISA need to provide in order to facilitate
vectorized compilation?

Big picture/themes in architecture

What else does the compiler need to do to
detect and compile vectorizable code?

???

How many functional units does a uarch
need to support vector instructions? How

do those functional units behave?

???

Simple approach: single pipelined FU

H&P fig. 4.4

Upsides:
● Less hardware
● Smaller clock cycle
● One result/cycle
● Data within vector assumed independent: no hazards

More efficient approach: multiple FUs

H&P fig. 4.4

Why not just have 64
unpipelined FUs?

Lanes

H&P fig. 4.5

Convoy: set of vector instructions that can potentially execute together

Chime: time it takes to execute a convoy

vld v0, s1
vmul.vx v1, v0, t0
vld v2, s2
vadd.vv v3, v1, v2
vst v3, t1

Measuring performance: convoys and chimes

Approximation of runtime for this
vector machine: 3 * vlen

What complicates this metric?

How do we vectorize this code?

for (int i = 0; i < 100; i++) {
 for (int j = 0; j < 100; j++) {
 A[i][j] = 0;
 for (int k = 0; k < 100; k++) {
 A[i][j] += B[i][k] * C[k][j]
 }
 }
}

Complication of memory access

