(real architecture)

Roman architect

Author of De architectura, libri decem
Importance of geometric principles in
architectural design

image source

: S, g

https://www.thefamouspeople.com/profiles/vitruvius-34320.php

Opus Quadratum

strength

aesthetics

https://en.wikipedia.org/wiki/Opus_quadratum

Used to improve performance (not aesthetics/strength)
We can't really “see” it but spend all of our time designing
for it

Comes from an observation about applications (rather
than geometric principles):

(DLP) means there are pieces
of data that can be computed on at the same time

(TLP) means there are
independent tasks that can execute at the same time

: running instructions at the same time - moderate
exploitation of data-level parallelism

: hardware support for switching between tasks

: (such as vector machines and GPUS)
apply single instruction to multiple pieces of data in parallel

: handling independent transactions (such as in servers,
operating systems, databases)

Dataistream

Instruction stream

(More or less) what
we've been studying so
far

Doesn't really exist
commercially

Independent
processing units
computing on
independent data

Different data goes
into FUs performing
same operation

What's the point of exploiting DLP?
(In what applications might we be
applying the same operation to different
pieces of data?)

What advantages might SIMD-style
computing have?

Vector architectures

https://en.wikipedia.org/wiki/Cray-1#/media/File:Science_Museum_20180227_132902_(49362732462).jpg

Suffixes: .vv (vector-vector), .vx (vector-scalar), .vi (vector-immediate)
Arithmetic/logical/shift: vadd, vsub, vrsub, etc

Compare: vmseq, vmsne, vms{l,g}{t,e}[u]

Max/min: vmin[u], vmax[u]

Multiply-add (like dot product): vmacc, vnmsac, vmadd, vnmsub
Merge (set based on mask): vmerge

Reductions: vredsum, vredand, vredor, vredxor

source

https://github.com/riscv/riscv-v-spec/blob/v1.0/v-spec.adoc#11-vector-integer-arithmetic-instructions

Y=aX+Y

assume X 1is in s1, Y 1is 1n s2

1i sO, a # sO = a

addi tO, s1, 256 # tO = X + (64 x 4) (end address)
loop:

lw t1, 0(s1l) # t1 = x[1i]

mul t1, t1, sO # x[1] = x[1] * a

lw t2, 0(s2) # t2 = y[1i]

add t2, t2, t1 # y[i] = x[1] *» a + y[1i]
addi s1, si1, 4 # i++

addi s2, s2, 4 {# i++

bne s1, t0O, loop

Compare to vectorized version

What assumption are we

making about our data
here?

. . . . setvl t0, sl
for (int i = 0; 1 < 50; i++) 7 4 yl, t0 = min(MVL, s1)

[i] = a *» x[1] + y[i]; 1i s0, a
: . vld vO, sl
y vld vl, s2

vmul.vx vO, vO, sO
vadd.vv v1, v0O, vl
vst vl, s2

17.4 Vector Length

The active vector length is held in the XLEN-bit WARL vector length CSR v1, which can only hold
values between 0 and MVL inclusive. Any writes to the maximum configuration registers (vcmaxw
or venpred) cause vl to be initialized with MVL. Writes to vetype do not affect v1.

Compiler generating vectorized code when the # of loop iterations is
unknown

Value of

H&P fig. 4.6
Rangeofi 0 m (m+MVL) (m+2xMVL) ... oo (n=MVL)
start = O] (m=1) (m=1) (m-1) (m-1) (n—1)
vlen = (n % MVL) FMVL +2xMVL +3xMVL

for (int i = 0; 1 < n / MVL; i++) 3
for (int 1 = start; 1 < start + vlen; i++) 3
ylil = a * x[i] + y[i];

sTart += vien;
vlen = MVL;

What purpose does vmerge serve?

What if we could tell the processor to

only do this operation for indices |
where x[i] != 0?

Vector extensions are a really good example of the interplay between
ISA, hardware, and compiler

How should the ISA support efficient hardware design?

What operations does the ISA need to provide in order to facilitate
vectorized compilation?

What else does the compiler need to do to
detect and compile vectorizable code?

How many functional units does a uarch
need to support vector instructions? How
do those functional units behave?

Upsides:

e Less hardware

e Smaller clock cycle

e One result/cycle

e Data within vector assumed independent: no hazards

H&P fig. 4.4

Element group

Why not just have 64
unpipelined FUs?

H&P fig. 4.5

Vector Vector Vector Vector
registers: registers: registers: registers:
elements elements elements elements

0,4,8,... AN 2,6,10,... 3.711,...

Vector load-store unit

Measuring performance: convoys and chimes

Approximation of runtime for this

vector machine: 3 * vien
What complicates this metric?

How do we vectorize this code?

for (int i = 0; i < 100; i++) $
for (int j = 0; j < 100; j++) 1§
A[il[j] = ©O;
for (int k = 0; k < 100: k++

