
(real architecture)PARALLELISM IN 
ARCHITECTURE



Vitruvius
Roman architect
Author of  De architectura, libri decem
Importance of geometric principles in 
architectural design
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https://www.thefamouspeople.com/profiles/vitruvius-34320.php


Opus Quadratum

Squared-off blocks 
are placed in parallel
Alternating direction 

of placement 
improves strength

Different designs can 
be created, for 
aesthetics
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https://en.wikipedia.org/wiki/Opus_quadratum


Used to improve performance (not aesthetics/strength)

We can’t really “see” it but spend all of our time designing 
for it

Comes from an observation about applications (rather 
than geometric principles):

Data-level parallelism (DLP) means there are pieces 
of data that can be computed on at the same time

Task-level parallelism (TLP) means there are 
independent tasks that can execute at the same time

Contrast with parallelism in computer architecture



Instruction-level: running instructions at the same time – moderate 
exploitation of data-level parallelism

Thread-level: hardware support for switching between tasks

Hardware approaches for DLP: (such as vector machines and GPUs) 
apply single instruction to multiple pieces of data in parallel

Request-level: handling independent transactions (such as in servers, 
operating systems, databases)

Hardware support for parallelism



Flynn’s taxonomy

Single Multiple

Single

SISD MISD

Multiple

SIMD MIMD

(More or less) what 
we’ve been studying so 

far

Doesn’t really exist 
commercially

Different data goes 
into FUs performing 

same operation

Independent 
processing units 

computing on 
independent data



What’s the point of exploiting DLP?
(In what applications might we be 

applying the same operation to different 
pieces of data?)

???



What advantages might SIMD-style 
computing have?

???



Hail from the 60s, popular in the the 
supercomputers of the 70s (Cray)

Place data in vector registers for 
computation

Cray-1 (1976): 8 vector registers of 
64 values each

Vector loads/stores can be pipelined: 
amortize latency

Vector architectures
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https://en.wikipedia.org/wiki/Cray-1#/media/File:Science_Museum_20180227_132902_(49362732462).jpg


Suffixes: .vv (vector-vector), .vx (vector-scalar), .vi (vector-immediate)

Arithmetic/logical/shift: vadd, vsub, vrsub, etc

Compare: vmseq, vmsne, vms{l,g}{t,e}[u]

Max/min: vmin[u], vmax[u]

Multiply-add (like dot product): vmacc, vnmsac, vmadd, vnmsub

Merge (set based on mask): vmerge

Reductions: vredsum, vredand, vredor, vredxor

Vector instructions (RISC-V V extension)

source

https://github.com/riscv/riscv-v-spec/blob/v1.0/v-spec.adoc#11-vector-integer-arithmetic-instructions


Y = aX + Y

# assume X is in s1, Y is in s2
li s0, a # s0 = a
addi t0, s1, 256 # t0 = X + (64 * 4) (end address)
loop:
lw t1, 0(s1) # t1 = x[i]
mul t1, t1, s0 # x[i] = x[i] * a
lw t2, 0(s2) # t2 = y[i]
add t2, t2, t1 # y[i] = x[i] * a + y[i]
addi s1, s1, 4 # i++
addi s2, s2, 4 # i++
bne s1, t0, loop

Non-vector example of vectorizable code



Compare to vectorized version
Y = aX + Y

li s0, a
addi t0, s1, 256
loop:
lw t1, 0(s1)
mul t1, t1, s0
lw t2, 0(s2)
add t2, t2, t1
addi s1, s1, 4
addi s2, s2, 4
bne s1, t0, loop

li s0, a
vld v0, s1 # v0 = X
vld v1, s2 # v1 = Y
vmul.vx v0, v0, s0 # X = a * X
vadd.vv v1, v0, v1 # Y = a * X + Y
vst v1, s2

OR JUST:

li s0, a
vld v0, s1
vld v1, s2
vmacc.vx v1, s0, v0 # Y = a * X + Y
vst v1, s2

What assumption are we 
making about our data 

here?



for (int i = 0; i < 50; i++) {

    y[i] = a * x[i] + y[i];

}

How to handle a loop like this?
setvl t0, s1 
# vl, t0 = min(MVL, s1)
li s0, a
vld v0, s1
vld v1, s2
vmul.vx v0, v0, s0
vadd.vv v1, v0, v1
vst v1, s2



Compiler generating vectorized code when the # of loop iterations is 
unknown

Strip mining

start = 0;
vlen = (n % MVL)
for (int j = 0; j < n / MVL; j++) {

for (int i = start; i < start + vlen; i++) {
y[i] = a * x[i] + y[i];

}
start += vlen;
vlen = MVL;

}
this loop can be vectorized

H&P fig. 4.6



for (int i = 0; i < 64; i++) {
if (x[i] != 0) {

y[i] = a * x[i];
}

}

What purpose does vmerge serve?

What if we could tell the processor to 
only do this operation for indices i 

where x[i] != 0?

li s0, a
vld v0, s1
vld v1, s2
vmsne v2, v0, 0 # v2[i] = x[i] != 0 ? 1 : 0
vmul.vx v0, v0, s0 # x[i] = a * x[i]
vmerge v1, v1, v0, v2 # y[i] = v2[i] ? x[i] : y[i]
vst v1, s2



Vector extensions are a really good example of the interplay between 
ISA, hardware, and compiler

How should the ISA support efficient hardware design?

What operations does the ISA need to provide in order to facilitate 
vectorized compilation?

Big picture/themes in architecture



What else does the compiler need to do to 
detect and compile vectorizable code?

???



How many functional units does a uarch 
need to support vector instructions? How 

do those functional units behave?

???



Simple approach: single pipelined FU

H&P fig. 4.4

Upsides:
● Less hardware
● Smaller clock cycle
● One result/cycle
● Data within vector assumed independent: no hazards



More efficient approach: multiple FUs

H&P fig. 4.4

Why not just have 64 
unpipelined FUs?



Lanes

H&P fig. 4.5



Convoy: set of vector instructions that can potentially execute together

Chime: time it takes to execute a convoy

vld v0, s1
vmul.vx v1, v0, t0 
vld v2, s2
vadd.vv v3, v1, v2
vst v3, t1

Measuring performance: convoys and chimes

Approximation of runtime for this 
vector machine: 3 * vlen

What complicates this metric?



How do we vectorize this code?

for (int i = 0; i < 100; i++) {
    for (int j = 0; j < 100; j++) {
        A[i][j] = 0;
        for (int k = 0; k < 100; k++) {
            A[i][j] += B[i][k] * C[k][j]
        }
    }
}

Complication of memory access


