
Horrors of ILP:
Spectre and
dead μops

Reading
Spectre

Paper

Webpage

I see dead uops

Paper

Article

Bonus: Meltdown

Paper

Usenix page (slides, presentation)

https://spectreattack.com/spectre.pdf
https://meltdownattack.com/
https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf
https://www.sciencedaily.com/releases/2021/04/210430165903.htm
https://meltdownattack.com/meltdown.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

? ? ?
What performance metrics (beyond CPI)
might become important in a speculative

CPU?

H&P fig. 3.42

% of executed
uops that were
not committed

? ? ?
What effects would OOO/speculative

execution have on the memory system?
(Hint: think protected access and/or caches)

Two key ideas:

● Instructions can be executed but not committed (transient instructions)
● Transient instructions leave footprints in the microarchitecture

By forcing an unsafe instruction to execute speculatively, we can observe
what would have happened if it had been committed

OOO/speculative attacks

libFunc(x) {
 if (x < arraySize) {
 key = arr1[x];
 return arr2[key];
 }
}

Spectre

Can we learn a secret key’ stored at
some index j >= arraySize of arr1?

libFunc(x) {
 if (x < arraySize) {
 key = arr1[x];
 return arr2[key];
 }
}

Spectre setup

1. Train the branch predictor
for (int i = 0 ; i < arraySize; i++) {
 libFunc(i);
}

The branch will be
taken

libFunc(x) {
 if (x < arraySize) {
 key = arr1[x];
 return arr2[key];
 }
}

Shared $

Spectre setup

1. Train the branch predictor
2. Prime the cache
● evict by walking addresses
● call library functions that access

key’ but not arraySize, arr2

The branch will be
taken

key’

arraySize arr2

libFunc(x) {
 if (x < arraySize) {
 key = arr1[x];
 return arr2[key];
 }
}

Shared $

Spectre attack
libFunc(large x)

The branch will be
taken

key’

arraySize arr2

Speculate taken
Takes a while to resolve due to uncached
arraySize

executes speculatively; fast

executes speculatively; brings
arr2[key’] into cache

arr2[key’]

libFunc(x) {
 if (x < arraySize) {
 key = arr1[x];
 return arr2[key];
 }
}

Shared $

Spectre measure

access addresses that map to the same
blocks as possible values of arr2[key’]
time results
if fast: can guess value of key’

The branch will be
taken

key’

arraySize arr2

arr2[key’]

? ? ?
How do we mitigate spectre?

Instructions that provide serialization/stop speculation

Different mechanisms and restrictions

Some only serialize memory operations

x86: LFENCE, arm: ISB/DMB/DSB; RISCV: FENCE/FENCE.I

Barrier instructions

Tradeoff between security and
performance: we lose speed of

speculation on in-bounds
accesses

Active research area on how to
make this performant!

libFunc(x) {
 if (x < arraySize) {
 asm volatile(“lfence”);
 key = arr1[x];
 return arr2[key];
 }
}

source

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html

Micro-op cache
Ren, Xida, et al. "I see dead µops:
Leaking secrets via intel/amd
micro-op caches." 2021
ACM/IEEE 48th Annual
International Symposium on
Computer Architecture (ISCA).
IEEE, 2021.

uop $ is
populated on
fetch (prior to
instructions
executing)

I see dead uops attack

Indirect jump that depends on secret
not mitigated by lfence!

Bonus: meltdown
source

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

Bonus: users

