/

HORRORS OF ILP:
Spectre and
dead npops

)\ : ° ° v ° ° o
) ° ° ° . 0/ . ° o
7/

A /0™ N NS e e vy

Reading

Spectre

Paper
Webpage

| see dead uops
Paper
Article

Bonus: Meltdown

Paper
Usenix page (slides, presentation)

https://spectreattack.com/spectre.pdf
https://meltdownattack.com/
https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf
https://www.sciencedaily.com/releases/2021/04/210430165903.htm
https://meltdownattack.com/meltdown.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

What performance metrics (beyond CPI)
might become important in a speculative
CPU?

H&P fig.

% of executed
uops that were
not committed

Work wasted/total work

3.42

40% A

35% -

30% A

25% A

20% A

15% -

10% -

5% A

What effects would OOO/speculative
execution have on the memory system?
(Hint: think protected access and/or caches)

®

000/speculative attacks

Two key ideas:

e Instructions can be executed but not committed (transient instructions)
e Transient instructions leave footprints in the microarchitecture

By forcing an unsafe instruction to execute speculatively, we can observe
what would have happened if it had been committed

Spectzre

libFunc(x) 3

1f (x < arraySize) 1% '
key = arri[x]; Can we learn a secret key’ stored at

return arr2[key]; some index j >= arraySize of arr1?

Spectre setup

1ibFunc(x) 3

if (x < arraySize) 1 1. Train the branch predictor A
key = arrl([x]; for (int i = @ ; i < arraySize; i++) ¢
return arr2[key]; 1ibFunc (i) ;

1 £

§ _)

& P wmen

Spectre setup %

libFunc(x) 3

if (x < arraySize) 2 1. Train the branch predictor
key = arrl[x]; 2. Prime the cache
return arr2[key]; e evict by walking addresses
h e calllibrary functions that access
§ key’ but not arraySize, arr2

Shared $

key’

arraySize arr2

The branch will be
laken

=

Spectre attack

1ibFunc(x) < libFunc(laxge x)
1if (x < arraySize) 3
key = arrl[x]; Speculate taken
return arr2[key]; Takes a while to resolve due to uncached
1 { arrqvsSize
1 executes speculatively; fast
executes speculatively; brings
Shared $ arr2[key’] into cache

key’

The branch will be
laken

arraySize arr2 q
{

Spectre measure %

libFunc(x) 3

if (x < arraySize) 1 access addresses that map to the same
key = arrl[x];

blocks as possible values of arr2|key’
return arr2[key]; fime resultps [key']
} m

? if fast: can guess value of key’

Shared $

key’

arraySize arr2

The branch will be
laken

How do we mitigate spectre?

Barrier instructions

Instructions that provide serialization/stop speculation
Different mechanisms and restrictions
Some only serialize memory operations

x86: LFENCE, arm: ISB/DMB/DSB; RISCV: FENCE/FENCE.|

libFunc(x) 3% Tradeoff between security and
if (x < arraySize) % performance: we lose speed of
asm volatile(“lfence”); speculation on in-bounds
key = arrl[x]; accesses
return arr2[key]; Active research area on how to
§ make this performant!

| |
| |

Turning on mitigation for Spectre variant 1 and Spectre variant 2

1. Kernel mitigation

Spectre variant 1

For the Spectre variant 1, vulnerable kernel code (as determined by code audit or scanning tools_

_ for bounds clipping [2] to avoid any usable disclosure gadgets. However, it

may not cover all attack vectors for Spectre variant 1. 7

7

Copy-from-user code has an LFENCE barrier to prevent the access_ok() check from being mis-speculated. The barrier
1s done by the barrier nospec() macro.

For the swapgs variant of Spectre variant 1, LFENCE barriers are added to interrupt, exception and NMI entry where
needed. These barriers are done by the FENCE SWAPGS KERNEL ENTRY and FENCE SWAPGS USER ENTRY
macros.

SN source

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html

Ren, Xida, et al. ’| see dead pops: (
Leaking secrets via intel/amd

- micro-op caches." 2021
Micrxo- op CaChe ACM]/IEEE 48th Annual
International Symposium on
Computer Architecture (ISCA).

BPU: predicts

£ 2> next-instruction address IEEE, 2021.
£3
2 @ .
SE£- Instruction Fetch Unit Micro-Op Cache
[S)
= Le
E O
3 ® 16 Bytes / Cycle MaCl'O-Op 8 ways
£0 L 5) Queue — . uop $ is
Predecoder 6 Macro-Ops / Cycle
(Length Decode) L @ pOpuIOted on
© 0
. & fetch (prior to
Decoders macif:;:?cyd e o . .
0= e [
——1 Instructions

1 1 1 D E— il eXGCUtIng)

1| e e @ [!

1 1 1~4 l ‘

MSROM
\ : ' l I I 6 micro-ops / cycle
5 fused
mlcro-:psse/ cycle 4 micro-ops / cycle

222

Instruction Decode Queue (IDQ)

Fig. 1: x86 micro-op cache and decode pipeline

O)

I see dead uops attack

. char secret;
» extern void victim_ function (ID user_id) {
// authorization check bypassed by mistraining
if (user_id is authorized) {
asm volatile("lfence");
// LFENCE: stall the execution of
// younger instructions

9 // transmitter: i : .
fun[secret] () ; Indirect jump that depends on secret

| not mitigated by Ifence!

Listing 5: Victim Method for our Variant-2 Attack

O,

source

Bonus: meltdown

meltdown@meltdown ./meltdown
. : 61 78 20 6f 72 20 73 Physical memory

: 69 6e 65 2c 20 69 74 — L =
: 20 75 73 65 64 20 77
: 72 69 7a 61 74 69 6f et e it
: 69 6¢c 69 63 6f 6e 20
: 20 49 6e 63 2e 20 20
: 74 68 65 20 61 75 74 0 A L -1
: 20 6e 6f 20 63 6¢ 61 - a2 D
: 65 73 61 0a 20 69 73

ARl e char data = *(charx) 0xffffffff81a0@0e@;
. 6174 65 64 20 77 69 array[data » 4096] -

: 6T 6e 20 47 72 61 70 20 49 6e 63 |on Graphics, Inc
: 2e Oa 20 2e 0Oa 20 54
: 6 6e 20 6f 66 20 4d
: 64 65 73 20 47 4c 58
: 63 61 70 61 62 69 6¢C
: 20 69 73 20 63 61 70

0 max

Kernel

(ot
wn
1)
=
S o2
N

[cycles]

w H U
o O O
o O O
—— >

Access time

: 62 6 74 68 20 64 69
: 69 6e 64 69 72 65 63 0 50 100 150 200 250

Page

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

Bohus: usexrs
@ o = -

How bad is it to disable Specter and Meltdown protections in 2021
for the extra performance?

Disable Spectre/Meltdown protection for a 4% performance boost

By = NotHereToPlayGames
September 9, 2023 in Windows 10

@ Mehrdad X Created on March 16, 2018
New win 10 version (1803) and Specter/Meltdown patch

Windows 10 version 1803 is include Specter/Meltdown patch ?
this is important for me because i don't want install them, this patches will reduce my CPU performance.

\\)\ ®

