
(Uniprocessor) 
Thread-level 
parallelism



? ? ?
ILP can hide a lot of latency:
● Multi-cycle instructions

● Data hazards
● Control hazards

What latency can’t ILP hide?



Superscalar waste

cycles



Threads

Individual imperative 
programs that run 
concurrently and share an 
address space

Instruction memory

Heap

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3



Allow multiple threads to share CPU resources (FUs)

Contrast with general TLP (thread-level parallelism) in multi-processor 
systems (each processor provides separate resources)

Usually multithreaded per processor as well

NOT instruction-level parallelism!!! (but can play well with ILP techniques)

Uniprocessor multithreading



? ? ?
What do we need to add (or replicate) in the 

hardware to support multithreading?



RISC-V harts🧡



Granularity of multithreading

image source
image source

https://en.wikipedia.org/wiki/Gravel
https://commons.wikimedia.org/wiki/File:Fine_sand.jpg


Coarse: waste a cycle on “context switching”

Coarse: feels like there would be less complexity (doesn’t require ability to 
schedule a new thread every cycle)

Coarse: might lead to starvation :(

Fine vs. coarse grain



Simultaneous MultiThreading



Each thread has own PC, own ROB

Execute is agnostic to which instruction belongs to which thread

One or more threads issue instructions per cycle on OOO processor

Execution and committing might happen from multiple threads

Intel’s name for SMT: “Hyperthreading”

Intel, AMD, ARM implementations allow for two threads

Not all processors support SMT

How does SMT differ from OS/SW-based scheduling?

SMT is “simpler” / OS has to save a bunch of info on context switch

More info on SMT



? ? ?
What sorts of workloads wouldn’t work well for 

SMT?



Diminishing gains

Why is single thread 
SMT slightly worse 
than superscalar 

without SMT? 

What leads to this drop?
H. M. Levy, Jack L. Lo, J. S. Emer, R. L. Stamm, 
S. J. Eggers and D. M. Tullsen, "Exploiting 
Choice: Instruction Fetch and Issue on an 
Implementable Simultaneous 
Multithreading Processor," 23rd Annual 
International Symposium on Computer 
Architecture (ISCA'96), Philadelphia, PA, 
USA, 1996, pp. 191-191, link

https://ieeexplore.ieee.org/document/1563047


Dean M. Tullsen, Susan J. 
Eggers, and Henry M. Levy. 
1995. Simultaneous 
multithreading: maximizing 
on-chip parallelism. In 
Proceedings of the 22nd 
annual international 
symposium on Computer 
architecture (ISCA '95). 
Association for Computing 
Machinery, New York, NY, 
USA, 392–403. link

https://dl.acm.org/doi/abs/10.1145/223982.224449


? ? ?
How do we choose which thread to fetch 

instructions for in each cycle?



Fetch policies

ICOUNT: fetches 
from thread with 
the least number 
of instructions in 
decode/rename 

/instruction queue

Why is this good 
for throughput?



Power, Energy

Hadi Esmaeilzadeh, Ting Cao, Yang Xi, 
Stephen M. Blackburn, and Kathryn S. 
McKinley. 2011. Looking back on the 
language and hardware revolutions: 
measured power, performance, and 
scaling. SIGARCH Comput. Archit. News 
39, 1 (March 2011), 319–332. link

https://dl.acm.org/doi/10.1145/1961295.1950402


? ? ?
Whether an application will benefit from SMT is 

not obvious – what effect does this have on 
the programmer? What could be done about 

this?


