Compilexs

for
architects

STOP DOING Optimization

® Code was never meant to be optimized

e YEARS OF OPTIMIZING yet NO REAL-WORLD USE FOUND
for BETTER PERFORMANCE

® Wanted to get better performance anyways? We had a tool for
that, it was called "Upgrading hardware"

® "Yes please give me a low memory footprint. Please give me
5% CPU utilization" - Statements dreamed up by the utterly

Deranged
Look at what Low-level pregrammers have been demanding your Respect
for all this time, with all the RAM & CPU cores we built for them

(This is REAL optimizations, done by REAL programeers):

2 = number * &
= numboer;
« ¢ long *) &y
B
float * 8i;
threghalf (x20.y =y

2222090299220227?

"l spent the entire week reducing the system latency by 2ms"

They have played us for absolute fools

o o ® o o

®

Why care about compilers?

HW techniques seem to rule the field: branch prediction, OOO, speculation...

BUT
e Understanding HW/SW tradeoffs and interactions is a useful exercise
e Some ISA features are designed to help compiler optimization
e Not every computer* has an Apple silicon or Intel chip
e uarch can reduce CPIl, compiler can reduce.. |

Can we do better?

addi tO, x0, 0 # t0/1 = 0 for (int 1 = 0; i < 100; i++) 3
addi t1, x0, 100 # t1 = 100 A[i] = A[1i] + c;
j guard ¢

loop: slli t2, t0, 2 # t2 = t0/1i % 4
add t2, a0, t2 # t2 = A + t2

lw t3, 0(t2) # t3 = A[i]
add t3, t3, al # t3 = A[i] + c
sw t3, 0(t2) # A[i] = A[1i] +c

addi t0, t0, 1 # tO/i++
guard: blt t0, tl1, loop

®

Reduce # of computations in loop

addi t0, x0, 0 # tO0/1i =0

addi t0, x0, 0 # t0/i =0 addi t1, x0, 100 # t1 = 100

addi t1, x0, 100 # t1 = 1060 addi t2, a0, 0 # t2 = A

j guard j guard

loop: slli t2, tO, 2 # t2 = tO0/1 * 4 | loop: 1w t3, O(t2) # t3 = A[1i]
add t2, a0, t2 # t2 = A + t2 add t3, t3, al # t3 = A[i] + ¢
lw t3, 0(t2) # t3 = A[1i] sw t3, 0(t2) # A[i] = A[1i] +c
add t3, t3, al # t3 = A[i] + ¢ addi t2, t2, 4 # advance pointer
sw t3, 0(t2) # A[i] = A[i] +c addi tO, tO, 1 # tO/i++

addi tO, to, 1 # tO/i++ guard: blt t0, t1, loop

guard: blt tO, t1, loop

#instrs: 4 + 100 * 7 # instrs: 5 + 100 * 6

Get rid of i

addi t0, x0, 0 # t0/i =0

addi t1, x0, 100 # t1 = 100 addi t1, a0, 400 # stop before A[100]
addi t2, a0, 0 # t2 = A addi t2, a0, 0 # t2 = A

j guard j guard

loop: 1w t3, 0(t2) # t3 = A[i] loop: lw t3, 0(t2) # t3 = A[i]
add t3, t3, al # t3 = A[i] + c add t3, t3, al # t3 = A[i] + ¢

sw t3, 0(t2) # A[i] = A[i] +c sw t3, 0(t2) # A[1i] = A[i] +c
addi t2, t2, 4 ## advance pointer addi t2, t2, 4 # advance pointer
addi t0, t0, 1 # tO/i++ guard: blt t2, t1, loop

guard: blt t0, tl1, loop

#instrs: 5 + 100 * 6 # instrs: 4 + 100 * 5

How else to reduce total instructions?

addi t1, a0, 400 # stop before A[100]
addi t2, a0, 0 # t2 = A

] guard

loop: 1w t3, O0(t2) # t3 = A[i]

add t3, t3, a1l # t3 = A[i] + c

sw t3, 0(t2) # A[i] = A[i] +c
addi t2, t2, 4 # advance pointer
guard: blt t2, tl1, loop

addi t1, a0, 400 i#
addi t2, a0, 0 1k
j guard

loop: 1w t3, 0(t2)
add t3, t3, al #
sw t3, 0(t2) it
addi t2, t2, 4 i
guard: blt t2, t1,

stop before A[100]
t2 = A

t3 = A[1i]
t3 = A[i] + ¢
A[i] = A[i] +c
advance pointer
loop

Downsides to loop unrolling?

®

Review: conditional instructions

Some ISAs set condition codes as side effect of instruction
overflow, zero, not zero, negative, etc

Often paired with branch instructions that don't have source registers
ex:cmp eax, 0; jne Binstead of bne t1, x0

Can sometimes be used in conjunction with non-branch instructions

Conditional move (CMOVcc) in x86 will move value from memory or
register to register based on condition (turn into a nop otherwise)

®

Arm conditional execution

source

“Almost all ARM instructions can include an optional condition code. This
is shown in syntax descriptions as {cond}. An instruction with a condition
code is only executed if the condition code flags in the CPSR* meet the
specified condition.”

“Almost all ARM data processing instructions can optionally update the
condition code flags according to the result. To make an instruction
update the flags, include the S suffix as shown in the syntax description for
the instruction.”

*Current Program Status Register (holds condition flags)

https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference/Conditional-execution?lang=en

C;

Axrm conditional GCD example

Source

https://developer.arm.com/documentation/dui0068/b/Writing-ARM-and-Thumb-Assembly-Language/Conditional-execution/Example-of-the-use-of-conditional-execution?lang=en

Do conditional instructions introduce hazards
in a traditional pipelined processor?

C;

What about RISC-V? (fomthespec)

The conditional branches were designed to include arithmetic comparison operations between
two registers (as also done in PA-RISC and Xtensa ISA), rather than use condition codes (z86,
ARM, SPARC, PowerPC), or to only compare one register against zero (Alpha, MIPS), or
two registers only for equality (MIPS). This design was motivated by the observation that a

CO1
CO(

fet
(es
ari
15 1
eal
brd
ran

We considered but did not include conditional moves or predicated instructions, which
effectively replace unpredictable short forward branches. Conditional moves are the simpler
the two, but are difficult to use with conditional code that might cause exceptions (mem
accesses and floating-point operations). Predication adds additional flag state to a system, ad
tional instructions to set and clear flags, and additional encoding overhead on every instructi
Both conditional move and predicated instructions add complexity to out-of-order microarchit
tures, adding an implicit third source operand due to the need to copy the original value of
destination architectural register into the renamed destination physical register if the predic
is false. Also, static compile-time decisions to use predication instead of branches can res
in lower performance on inputs not included in the compiler training set, especially given 1
unpredictable branches are rare, and becoming rarer as branch prediction techniques improve

ISA vs uArch

<

We note that various microarchitectural tewchm'ques exist to ciynamz'cally convert unpr(;dictable

short forward branches into internally predicated code to avoid the cost of flushing pipelines on
a branch mispredict [13, 17, 16] and have been implemented in commercial processors [27].

IBM Power-7 paper

If the effect of a conditional branch is only to conditionally
skip over a subsequent FX or LS instruction and the branch
is highly unpredictable, POWER7 can often detect such a
branch, remove it from the instruction pipeline, and
conditionally execute the FX or LS instruction. The
conditional branch is converted to an internal “resolve”
operation, and the subsequent FX or LS instruction is made
dependent on the resolve operation. When the condition is
resolved, depending on the taken or not-taken determination
of the condition, the FX or LS instruction is either
executed or ignored. This may cause a delayed issue of
the FX or LS instruction, but it prevents a potential pipeline
flush due to a mispredicted branch.

https://inst.eecs.berkeley.edu/~cs252/sp17/papers/POWER7-Server-IBM2011.pdf

®

What if the compilexr could speculate?

Would want to move speculated instrs before condition evaluation
Why? Might help VLIW scheduling or reducing pipeline hazards

Compiler needs to be able to find such instrs and move them without
affecting correctness

We also need to:

’ . . Cannot do
Ignore exceptions in speculated execution this with just
a compiler;
Be able to exchange stores and loads/stores
9 / need HW

support!

®

Example of compiler speculation

1f X == 0; X =Y; else X += 4;

Assume branch is almost What could go Wrong if x 1= 0°?
lw t1, 0(t0) never taken (X=Y much - Unnecessary page fault
more likely than X+=4) - Y's address could be invalid

bne tl1, x0, rare
lw t1, 0(s0O)

] store

rare: addi t1, t1, 4
store: sw t1l, 0(t0O)

(memory protection exception)

lw t1, 0(t0)

lw t3, 0(sO) # speculative load
beq t1, x0, store

addi t3, t1, 4

store: sw x3, 0(tO)

C;

Four approaches to exceptions:

1) OS returns undefined value instead of ending execution

Works fine for correct programs, yields incorrect results for
programs that will have real exceptions

2) ISA has speculative instructions (do not result in exceptions) +
exception check instructions used after speculation is resolved

3) Track exceptions using “poison bits” on registers that only activate
exception when value is used

Need to mark which instructions are speculative

4) Hardware buffers speculative instructions (like a ROB-lite)

®

What about reordering loads/stores?

lw t3, 0(t2) lw t3, 0(t2)

.. lw t4, 4(t2) Compiler can
sw t3, 0(t2) e probably compute
1w t4, 4(t2) o that this is fine to do
. sw t3, 0(t2)

sw t4, 4(t2) sw t4, 4(t2)

sw t3, 8(t2) lw t4, 4(t1) # speculative
1w t4, 4(t1) sw t3, 8(t2) # compare addr
guardian instr # fix if needed

But what about this:

