
Compilers and HW

Compiler packs instructions into one long instruction word

Early VLIW: no dependences between instructions, units operate in lockstep

Pairs with loop unrolling, trace scheduling

Pros:

Cons:

lw t3, 0(t2)
mul t4, t5, a1
sw t5, 0(t2)
addi t2, t2, 4
bge t6, t1, end

VLIW (Very Long Instruction Word)

bge t2, t1, endlw t3, 0(t2) mul t4, t5, a1sw t5, 0(t2) addi t0, t0, 4

Decoder

Mem Mem Mul Alu Alu

P
C

Follow up: loop dependence
for (int i = 0; i < 100; i++) {
 A[i + 1] = A[i] + C[i];
 B[i + 1] = B[i] + A[i + 1];
}

“loop carried
dependence”

cannot execute
successive iterations in

parallel

If we got rid of the loop carried
dependence, we would need

to make sure the two
operations in the loop body

are not reordered

Some seemingly dependent loops can be parallelized!

for (int i = 0; i < 100; i++) {
 A[i] = A[i] + B[i];
 B[i + 1] = C[i] + D[i]
}

A[0] = A[0] + B[0];
for (int i = 0; i < 99; i++) {
 B[i + 1] = C[i] + D[i];
 A[i + 1] = A[i + 1] + B[i + 1];
}
B[100] = C[99] + D[99]

Follow up: loop dependence

lp: lw t2, 0(t1)
 addi t2, t2, 8
 sw t2, 0(t1)
 addi t1, t1, -4
 bne t1, t0, lp

Follow up: software pipelining

lw t2, 0(t1)

addi t2, t2, 8
lw t3, -4(t1)

sw t2, 0(t1)
addi t3, t3, 8
lw t4, -8(t1)

addi -12(t1)

lp:
lw t2, 0(t1)
addi t4, t4, 8
sw t3, 8(t1)
addi t1, t1, -4
bne t1, t0, lp

addi t2, t2, 8
sw t3, 12(t1)

sw t2, t2, 4(t1)

? ? ?
What tradeoffs do you see between compiler
scheduling and hardware (OOO/speculative)
scheduling? Which do you like more? Do you

think they can be combined?

HW techniques seem to rule the field: branch prediction, OOO, speculation…

BUT

● Understanding HW/SW tradeoffs and interactions is a useful exercise
● Some ISA features are designed to help compiler optimization
● Not every computer* has an Apple silicon or Intel chip

Why care about compilers?

Real-world Arduino compiler example
(for Arm Cortex M0+)

Some ISAs set condition codes as side effect of instruction

overflow, zero, not zero, negative, etc

Often paired with branch instructions that don’t have source registers

ex: cmp eax, 0; jne B instead of bne t1, x0

Can sometimes be used in conjunction with non-branch instructions

Conditional move (CMOVcc) in x86 will move value from memory or
register to register based on condition (turn into a nop otherwise)

Conditional instructions

source

“Almost all ARM instructions can include an optional condition code. This
is shown in syntax descriptions as {cond}. An instruction with a condition
code is only executed if the condition code flags in the CPSR* meet the
specified condition.”

“Almost all ARM data processing instructions can optionally update the
condition code flags according to the result. To make an instruction
update the flags, include the S suffix as shown in the syntax description for
the instruction.”

*Current Program Status Register (holds condition flags)

Arm conditional execution

https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference/Conditional-execution?lang=en

Source

Arm conditional GCD example

https://developer.arm.com/documentation/dui0068/b/Writing-ARM-and-Thumb-Assembly-Language/Conditional-execution/Example-of-the-use-of-conditional-execution?lang=en

? ? ?
Do conditional instructions introduce hazards

in a traditional pipelined processor?

What about RISC-V? (from the spec)

ISA vs uArch

IBM Power-7 paper

https://inst.eecs.berkeley.edu/~cs252/sp17/papers/POWER7-Server-IBM2011.pdf

What if the compiler could speculate?
Would want to move speculated instrs before condition evaluation

Why? Might help VLIW scheduling or reducing pipeline hazards

Compiler needs to be able to find such instrs and move them without
affecting correctness

We also need to:

Ignore exceptions in speculated execution

Be able to exchange stores and loads/stores

Cannot do
this with just
a compiler;

need HW
support!

if X == 0; X = Y; else X += 4;

lw t1, 0(t0)
bne t1, x0, B1
lw t1, 0(s0)
j B2
B1: addi t1, t1, 4
B2: sw t1, 0(t0)

Example of compiler speculation

lw t1, 0(t0)
lw t3, 0(s0) # speculative load
beq t1, x0, B3
addi t3, t1, 4
B3: sw r3, 0(t0)

Assume branch is almost
never taken (X=Y much
more likely than X+=4)

What could go wrong if x != 0?
- Unnecessary page fault
- Y’s address could be invalid
(memory protection exception)

1) OS returns undefined value instead of ending execution

Works fine for correct programs, yields incorrect results for
programs that will have real exceptions

2) ISA has speculative instructions (do not result in exceptions) +
exception check instructions used after speculation is resolved

3) Track exceptions using “poison bits” on registers that only activate
exception when value is used

Need to mark which instructions are speculative

4) Hardware buffers speculative instructions (like a ROB-lite)

Four approaches to exceptions:

lw t3, 0(t2)
...
sw t3, 0(t2)
lw t4, 4(t2)
...
sw t4, 4(t2)

What about reordering loads/stores?
lw t3, 0(t2)
lw t4, 4(t2)
...
...
sw t3, 0(t2)
sw t4, 4(t2)

Compiler can
probably compute

that this is fine to do

But what about this: sw t3, 8(t2)
lw t4, 4(t1)

lw t4, 4(t1) # speculative
sw t3, 8(t2) # compare addr
guardian instr # fix if needed

Compilers should at least be hardware-aware to make optimizations

Advanced compiler optimizations require hardware and/or OS support

Tradeoff between statically and dynamically scheduled instructions

Takeaways

