
Multiple issue 
(superscalar)



Tournament branch predictors
Run local predictors and global predictor

Keep track of which one is doing better (using eg 2-bit predictor!) and use 
that one for each branch

H&P fig. 3.4



? ? ?
Even if we had perfect branch prediction, what 

would we need in order to make sure that 
speculative execution is fast?



Cache for computing branch or jump target address (new PC)

Potentially faster to fetch next instruction

Common in modern systems; unlike branch delay slots

Multiple ways to set this up (see Agner document)

Multiple levels

Different behavior for different types of branches/jumps

Branch target buffers

https://www.agner.org/optimize/microarchitecture.pdf


? ? ?
What is the theoretical best CPI for our OOO 

CPU (with or without speculation)?



Allows for multiple instructions to be issued at the same time

Dynamically (by processor): superscalar

Multiple variations: in-order, OOO, OOO + speculative

Statically (by compiler): Very Long Instruction Word (VLIW), EPIC

Multiple-issue



? ? ?
Potentially how many instructions can we 
issue at once if we have the following FUs? 

With what caveats?
● 1 load
● 1 store

● 2 integer ALUs
● 1 FP add/sub
● 1 FP mul/div



Issuing two instrs at once
lw t0 8(s0)

add t2, t0, t1

● What do the reservation 
stations/ROB look like?

● What does the hardware 
need to check in a single 
cycle?



1. Make sure there is room in the ROB (if speculative) and a reservation 
station for every instruction that might be in the next issue bundle (if 
necessary, bundles can be broken)

2. Analyze all dependences between instructions in bundle (done in 
hardware in one cycle – HW grows quadratically in complexity w/ 
bundle size!)

3. Update reservation stations info and ROB entries for all instructions in 
bundle and send them off to the FUs

Superscalar steps



Deeper pipelining: RAW hazards, control hazards

OOO

OOO w/ speculation

Multiple issue

ILP summary, so far



Compiler packs instructions into one Very Long Instruction Word

Early VLIW: no dependences between instructions, units operate in lockstep

Pros: 

Cons: 

lw t3, 0(t2)
mul t4, t5, a1
sw t5, 0(t2)
addi t2, t2, 4
bge t6, t1, end

Bonus: VLIW

bge t2, t1, endlw t3, 0(t2) mul t4, t5, a1sw t5, 0(t2) addi t0, t0, 4

Decoder

Mem Mem Mul Alu Alu

P
C



Some real stuff



Intel Core i7 
(H&P fig. 
3.41)

Pre-decode??
Complex macro-op 

decoder??
Loop stream detect??



Macro-op fusion

source

https://en.wikichip.org/wiki/File:core_mopf_on.png


Firestorm (Apple M1)
Source (NOTE: reverse-engineered: might not be fully accurate)

https://dougallj.github.io/applecpu/firestorm.html


Why is this a guide that’s specific to a uarch (as opposed to an ISA)?

Some interesting observations (link)

● Issue width/dispatch constraints (p62)
● Recommendations for loads/stores (p63)
● (non) renaming of special registers (p65)
● Macro-op fusion (p68)

Arm Cortex SW Optimization Guide

https://developer.arm.com/documentation/swog011050/latest/

