
Branch
prediction

Backwards and forwards branches
while(guard) {

 ...

}

loop: bne s0 s1 end

...

j loop

end: ...

j start

loop: ...

...

start: beq s0 s1 loop

Backwards branches are very
frequently taken (~90% by some

counts)
Forwards branches are a coin flip

without any other information

addi t0, x0, 0 // t0 = 0
addi t1, x0, 400 // t1 = 400
l1: addi t2, x0, 3 // t2 = 3
l2: addi t0, t0, 1 // t0++
addi t2, t2, -1 // t2--
bne t2, x0, l2 // loop while t2 > 0
slli t0, t0, 1 // t0 <<= 1
addi t1, t1, -1 // t1--
bne t1, x0, l1 // loop while t1 > 0

Double-loop code Dynamic branch prediction:
CPU can choose to predict

(keep executing as if)
branch is taken OR branch

is not taken

Flushes (pipeline or ROB) if
it’s wrong

How? Keep a Branch
Prediction Buffer (Branch
History Table) that maps
branch instr addresses to

predictions

Works great for outer loop (one misprediction and then 400 correct
predictions)

Works less great for inner loop:

1-bit BPB entry

2 bits can keep track of 4 states: strong taken, weak taken, weak not taken,
strong not taken

Keeps some of history (means branch prediction needs to be wrong twice
instead of once before changing) – works better for the inner loop!

2-bit BPB entry

Two-level predictors

if (x == 2) // branch A

 x = 0;

if (y == 2) // branch B

 y = 0;

if (x != y) // branch C

 …

Correlated branches

A taken and B taken
implies C not taken!
→ branch outcomes

are often not
independent of each

other

? ? ?
What is the simplest possible way to try to

predict correlated branches?

Global predictors

Correlating predictors

Tournament branch predictors
Run local predictors and global predictor

Keep track of which one is doing better (using eg 2-bit predictor!) and use
that one for each branch

H&P fig. 3.4

? ? ?
Even if we had perfect branch prediction, what

would we need in order to make sure that
speculative execution is fast?

Cache for computing branch or jump target address (new PC)

Potentially faster to fetch next instruction

Common in modern systems; unlike branch delay slots

Multiple ways to set this up (see Agner document)

Multiple levels

Different behavior for different types of branches/jumps

Branch target buffers

https://www.agner.org/optimize/microarchitecture.pdf

? ? ?
What is the theoretical best CPI for our OOO

CPU (with or without speculation)?

Allows for multiple instructions to be issued at the same time

Dynamically (by processor): superscalar

Multiple variations: in-order, OOO, OOO + speculative

Statically (by compiler): Very Long Instruction Word (VLIW), EPIC

Next week

Multiple-issue

? ? ?
Potentially how many instructions can we
issue at once if we have the following FUs?

With what caveats?
● 1 load
● 1 store

● 2 integer ALUs
● 1 FP add/sub
● 1 FP mul/div

Issuing two instrs at once
lw t0 8(s0)

add t2, t0, t1

● What do the reservation
stations/ROB look like?

● What does the hardware
need to check in a single
cycle?

