/

Branch Prediction

Train driver knows where
he is going, but the lever puller
does not. The lever puller can make
an educated guess though.

The train driver could stop at the fork each time to tell

the lever puller which way he is going. A

OR

The lever puller makes an educated guess. If he is wrong, the train driver stops,
I a n ‘ reverses, and then continues on the right track.

prediction e



Backwards and

while(guard) 1

Backwards branches are very
frequently taken (~90% by some
counts)

Forwards branches are a coin flip
without any other information

®

foxrwarxds branches

loop: bne sO sl end

7 loop

end:

J start
loop:

start: beq sO s1 loop



AN

Software should be optimized such that the sequential code path is the most common path, with
less-frequently taken code paths placed out of line. Software should also assume that backward
branches will be predicted taken and forward branches as not taken, at least the first time they are
encountered. Dynamic predictors should quickly learn any predictable branch behavior.

-

Unlike some other architectures, the RISC-V jump (JAL with rd=x0) instruction should always
be used for unconditional branches instead of a conditional branch instruction with an always-
true condition. RISC-V jumps are also PC-relative and support a much wider offset range than

branches, and will not pressure conditional branch prediction tables.



Double-loop code

Dynamic branch prediction:
CPU can choose to predict

addi t0, x0, 0 // tO = 0 (keep executing as if)
addi t1. x0. 400 // t1 = 400 branch is taken OR branch
. ' is not tak

11: addi t2, x0, 3 // t2 = 3 "

12: addi tO, tO, 1 // tO++ Flushes (pipeline or ROB) if
addi t2, t2, -1 /] t2-- It's wrong

bne t2, x0, 12 // loop while t2 > 0 How? Keep a Branch
slli t0, t0O, 1 // tO <<= 1 Prediction Buffer (Branch
addi t1, t1, -1 // t1-- History Table) that maps
bne t1, x0, 11 // loop while t1 > 0 branch instr addresses to

predictions



1-bit BPB entry

Works great for outer loop (one misprediction and then 400 correct
predictions)

Works less great for inner loop:



2-bit BPB entry

2 bits can keep track of 4 states: strong taken, weak taken, weak not taken,
strong not taken

Keeps some of history (means branch prediction needs to be wrong twice
instead of once before changing) — works better for the inner loop!



Two-level predictors




Correlated branches

if (x == 2) // branch A

X = 0;
i f == 2 b h B
1t by )y e A taken and B taken
y = 0; implies C not taken!
if (x !=vy) // branch C — branch outcomes

are often not
independent of each
other



What is the simplest possible way to try to
predict correlated branches?



Global predictors




Coxrrelating predictors




®

Tournament branch predictozxs

Run local predictors and global predictor

Keep track of which one is doing better (using eg 2-bit predictor!) and use
that one for each branch

Conditional branch misprediction rate
w 4> ~ (o 4]
0 0 ) 0
o~ o~ o~ o~

S ! 1)

Local 2-bit predictors'

o
o
e
*

H&P fig. 3.4

5% -

Correlating predictors-

Tournament predictors-
2% SR

1% 1

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Total predictor size



Even if we had perfect branch prediction, what
would we need in order to make sure that
speculative execution is fast?



Branch target buffers

Cache for computing branch or jump target address (new PC)
Potentially faster to fetch next instruction

Common in modern systems; unlike branch delay slots

Multiple ways to set this up (see Agner document)

Multiple levels

Different behavior for different types of branches/jumps


https://www.agner.org/optimize/microarchitecture.pdf

What is the theoretical best CPI for our OO0
CPU (with or without speculation)?



Multiple-issue

Allows for multiple instructions to be issued at the same time
Dynamically (by processor): superscalar

Multiple variations: in-order, OO0, OO0 + speculative

Statically (by compiler): Very Long Instruction Word (VLIW), EPIC

Next week



Potentially how many instructions can we
issue at once if we have the following FUs?
With what caveats?

e 1lload
e |store
e 2integer ALUs
e 1FPadd/sub
e 1FP mul/div



®

Issuing two instrs at once

lw t0 8(s0)
add t2, to, tl

e What do the reservation
stations/ROB look like?

e What does the hardware
need to check in a single
cycle?



