
Speculative
execution

Translation of complex machine instruction (macro-op) to multiple steps

For example, addq 8(%rdi) %rax might be translated into:

add 8 to rdi

load that address from memory

add that value to rax

store the result in rax

x86 processors have had a uop decoder since the Pentium Pro (1997)

Even RISC processors decode into uops – driven by design of FUs

From ISA lecture: micro-ops

Each of these can be issued
separately into a different

functional unit!

https://developer.arm.com/documentation/swog011050/latest/

Functional units

worksheet

SW example

https://docs.google.com/document/d/1ZX2GXxgxktK5uTpx9TmCv-mt1FWyYZUBBoNQ8oTtFds/edit?usp=sharing

Control hazards

We reduced CPI by about
6% by reordering… but the

real culprit keeping CPI > 1 is
the branch and jump!

We can use hardware to
compute jump addresses

earlier (P&H 4.8) … but there
will still be at least one

cycle wasted

addi t0, x0, 0 # t0/i = 0
addi t1, x0, 100 # t1 = 100
loop: bge t0, t1, end # loop while i < 100
slli t2, t0, 2 # t2 = t0/i * 4
add t3, a0, t2 # t3 = A + t2 (A + i * 4)
add t4, a1, t2 # t4 = B + t2 (B + i * 4)
lw t2, 0(t4) # t2 = B[i]
lw t4, 0(t3) # t4 = A[i]
addi t0, t0, 1 # t0/i++
add t4, t4, t2 # t4 = A[i] + B[i]
sw t4, 0(t3) # A[i] = A[i] + B[i]
j loop
end: nop

for (int i = 0; i < 100; i++) {
 A[i] = A[i] + B[i];
}

if x:
P1 // depends on x, not y

if y:
P2 // depends on y, not x

Control dependences

When dealing with control dependences:

1) instruction dependent on branch should not be moved before branch
2) instruction not dependent on branch should not be moved after branch

But this is pretty restrictive… instead, we may allow for instructions to be
executed (or partially executed) as long as we can preserve the correctness

of the program somehow

Branch delay slot

Along w/ hardware, this helps us
basically hide the cost of

unconditional jumps

What about branches?

Some older architectures
execute one instruction
immediately after a
branch/jump instruction
(regardless if the branch is
taken)

Up to compiler and/or CPU to
move an independent
instruction into that slot

addi t0, x0, 0
addi t1, x0, 100
loop: bge t0, t1, end
nop
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
addi t0, t0, 1
j loop
sw t4, 0(t3)
end: nop

5s assumption about branches
addi t0, t0, 1 IF ID EX Mem WB

addi t2, t2, -1 IF ID EX M W

bne, t2, x0, l2 IF ID EX M W

slli t0, t0, 1 IF ID EX

addi t1, t1, -1 IF ID

bne t1, x0, x11 IF

addi t0, t0, 1 IF ID EX M W

addi t2, t2, -1 IF ID EX M W

bne t2, x0, l2 IF ID EX M W

slli t0, t0, 1 IF ID

Waste 3
cycles on 2 of

every 3
iterations

(6 cycles/full
loop)

PC dest.
when

branch
taken

5s assumption about branches
addi t1, t1, -1 IF ID

bne t1, x0, x11 IF

addi t0, t0, 1 IF ID EX M W

addi t2, t2, -1 IF ID EX M W

bne t2, x0, l2 IF ID EX M W

slli t0, t0, 1 IF ID EX M W

addi t1, t1, -1 IF ID EX M W

bne t1, x0, x11 IF ID EX M W

not taken

Speculative execution
Assume branch behavior (e.g. not taken), don’t commit instructions until
outcome is known, squash in-flight instructions if needed

What needs to change about Tomasulo’s to support speculative
execution?

Remember: effect of execution became permanent (written to reg
file) on W stage of instruction

Enabling speculation with the ROB
Tomasulo’s allows instructions to execute and be committed out of order

Problem: doesn’t work very well for stores

Problem: doesn’t work very well for control hazards

What if instructions could execute out of order but had to commit in-order?

Re-order buffer (ROB) helps us do this

On issue, create a ROB entry

Only commit (write result of) instruction when it’s next in the ROB

Requires stores to happen in-order (why?)

Allows us to execute before we know the result of branch

The speculative CPU with ROB

Four stages of execution
Issue

If reservation station and ROB available, issue to both; update control entries

Execute

If operands available, execute instr; otherwise wait (for stores: this stage only
computes effective address)

Write

When result is available, send on CDB (update ROB, reservation stations)

Commit

If normal commit or store: update register/memory and remove instr from ROB

If incorrectly predicted branch: flush ROB and reservation stations, fetch correct instr

Example 4: speculative branch

? ? ?
What other hazard can result from the store

operation?

