
Tomasulo’s 
algorithm



Developed by Robert Tomasulo for IBM 360/91

Minimize RAW hazards by tracking data dependences and reordering

Minimize WAR and WAW hazards by register renaming

Limited to code within basic blocks (we’ll come back to branching soon)

div t0, t1, t2
add t3, t0, t4
sw t3, 0(s0)
sub t4, t5, t6
mul t3, t5, t4

Tomasulo’s algorithm intuition

What if the 
hardware 
had two 

temporary 
registers, X 

and Y?

div t0, t1, t2
add X, t0, t4
sw X, 0(s0)
sub Y, t5, t6
mul t3, t5, Y

div t0, t1, t2
sub Y, t5, t6
mul t3, t5, Y
add X, t0, t4
sw X, 0(s0)

now the div might have enough time 
to write to t0 before add needs it!



Link

Worksheets for today

https://docs.google.com/document/d/19n4XCe6vtYKvIUTzElSLbLiARMcoC_Z2ZQKw4nw2NGI/edit?usp=sharing


The OOO CPU(sketch of H&P fig 3.6)



Three stages of execution
Issue

If reservation station available, issue to station; tracking source/dest data

Source can be register (in which case, value is available) or reservation 
station (in which case, update res. station tags to wait for that result)

If dest is register, update register file tags to say data will come from this 
res. station

Execute

If operands available, execute instr; otherwise wait

Write

Once result is ready, send on CDB (update registers, reservation stations)



Execute latencies for our examples
Mul/div: 5 cycles

Load/store: 2 cycles (1 for addr, 1 for load/store)

ALU: 1 cycle



Example 1



Example 2: unrolled loop


