
OOO execution with 
Tomasulo’s 
algorithm



Developed by Robert Tomasulo for IBM 360/91

Minimize RAW hazards by tracking data dependences and reordering

Minimize WAR and WAW hazards by register renaming

div t0, t1, t2
add t3, t0, t4
sw t3, 0(s0)
sub t4, t5, t6
mul t3, t5, t4

Tomasulo’s algorithm intuition

What if the 
hardware 

could track 
dependences 

and 
temporarily 

store results? now the div might have enough time 
to write to t0 before add needs it!

div rd s1 s2

add rd s1 s2

sw s1 s2

sub rd s1 s2

mul rd s1 s2



The OOO CPU(sketch of H&P fig 3.6)



Three stages of execution
Issue

If reservation station available, issue to station; tracking source data 
(available and copied over or waiting on other reservation station)

If dest is register, update register file tags to say data will come from this 
res. station

Execute

If operands available, execute instr; otherwise wait

Write

Once result is ready, send on CDB (update registers, reservation station 
sources waiting on result)



Link

Execute latencies for our examples:

Mul/div: 3 cycles

Load/store: 3 cycles (1 for addr, 2 for load/store)

ALU: 1 cycle

Worksheets for today

https://docs.google.com/document/d/1gP5kQT1mK7FJtqHd-tJMNviVtsayfG4X-1jsBJdE8Y4/edit?usp=sharing


Example 1



Example 2: unrolled loop


