/

Branch Prediction

S
OUt Of 2043 i
O rd e r Train driver knows where

he is going, but the lever puller \\»\.\\ 3

does not. The lever puller can make o) \

L) an educated guess though. \\ S
execution;
[4 The train driver could stop at the fork each time to tell =

the lever puller which way he is going. A
advanced ,
The lever puller makes an educated guess. If he is wrong, the train driver stops,

reverses, and then continues on the right track.
prediction

5s pipeline when assume not

taken

addi to, t0, 1 IF ID EX Mem WB
addi t2, t2, -1 IF ID EX M W
bne, t2, x0, 12 IF | ID |EX | M Waste 3
cycles on 2 of
slli to, tO, 1 IF ID EX every3
, iterations
addi t1, t1, -1 IF ID (6 CYC|eS/fU||
bne t1, x0, x11 IF |OOp)
y PC dest.
addi to0, to, 1 < when
N branch
addi t2, t2, -1 taken IF ID EX | M W
bne t2, x0, 12 IF ID EX M W
|
®

/

5s pipeline when assume not taken

addi t1, t1, -1 IF ID
bne t1, x0, x11 IF
addi to, t0, 1
addi t2, t2, -1 IF ID EX M W
bne t2, x0, 12 IF ID EX M W
< not taken
sl1i t0, t0, 1) IF ID EX M W
addi t1, t1, -1 IF ID EX M
bne t1, x0, x11 IF ID EX

§

/

1-bit BPB entry

Works great for outer loop (one misprediction and then 400

correct predictions)

Works less great for inner loop:

Branch prediction
Wednesday, March 6, 2024 9:42 AM

addi to, x0, 0 // t0 = 0
addi t1, x0, 400 // t1 = 400
11: addi t2, x0, 38 // t2 = 3
12: addi tO, t0, 1 // tO++
addi t2, t2, =1 /] t2--
ébne E2 O // loop while t2 > 0
slli to, to, 1 J] tO <<= 1
addi t1, £1, =1 // tl--
bne t1, x0, 11 // loop while t1 > O

—

Waste 3
cycles on 2 of
every 3
iterations
(6 cycles/full
loop)
| \A- T P} g
- @) = ;(
T O L' v
o Ve |
v/ 1 lol€] 1w [x
\ €]y 4
O [h9 [m | I8

2-bit BPB entry

2 bits can keep track of 4 states: strong taken, weak taken, weak not taken,

strong not taken

Keeps some of history (means branch prediction needs to be wrong twice

instead of once before changing) — works better for the inner loop!

o _éfl
'm?d(15 N\ \pehave! bﬁﬂmy\

L_’__——

O QU 15 QHA'\UWN\ () ~

-

b i 4 N

Assumes instruction
can be fetched in the
next cycle (fast target

calculation)
N

sl

| X0 Y L N e
m’(fﬁ ')k\h" V‘&-‘s
WwN | -
W L oy X
wT i/ L) Vv
85T “lL wn X
wely |y
T €Ly v
4 ¢ n | X

|

Waste 3
cycles on
every 3rd
iteration

(3
cycles/full
loop)

Branch target buffers

Cache for computing branch target address (new PC)
Potentially faster to fetch next instruction

Common in modern systems; unlike branch delay slots
Multiple ways to set this up (see Agner document)

Multiple levels

Different behavior for different types of branches/jumps

Correlated branches

if (x == 2) // branch A

X = 0;
i f == 2 b h B
1t by)y e A taken and B taken
y = 0; implies C not taken!
if (x !=vy) // branch C — branch outcomes

are often not
independent of each
other

How would we design a branch predictor that
can handle correlated branches?

Coxrrelating predictors

Tournament branch predictozxs

Run multiple branch predictors at

®

once

Keep track of which one is doing better (using eg 2-bit predictor!) and use

that one

H&P fig. 3.4 a
5% -
4%
3% A

2% A

Conditional branch misprediction rate

1% 1

Local 2-bit predictors'

Correlating predictors-

A

Tournament predictors-

Total predictor size

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

®

Modexn branch prediction

Agner document

H&P talking about i7:
small first-level predictor to handle cost of predicting at every cycle
larger second-level predictor “as a backup”

combines two-bit, global, and loop exit predictors in tournament

https://www.agner.org/optimize/microarchitecture.pdf

The ~future~

B. Burgess,

‘Samsung exynos

MI processor,”
2016 IEEE Hot
Chips 28
Symposium
(HCS), Cupertino,
CA, USA, 2016, pp.
1-18, doi:
10.1109/HOTCHIPS.
2016.7936205.

link

Samsung M1

Micro-Architecture

Branch Prediction:
* Neural Net based predictor
* Two branches/cycle
Fetch up to 24-bytes/cycle
64-entry microBTB
4k-entry mainBTB
64-entry Call/Return Stack
Indirect Predictor
Loop Predictor
Decoupled AddrQ

SAMSUNG

Sch Sch
Branch ALUC

iMUL
iDIV

Branch
Prediction

—AddrQ

Icache

Inst Q

Decode

Rename

Disp Q

Sch Sch Sch Sch Sch
ALU ALU LdAddr StAddr StData

dTAG
Dcache

Align

Sch

FMAC

iSIMD
iMUL
Fevt
Crypt

FAdd
iISIMD
FDiv
Fst

https://ieeexplore.ieee.org/document/7936205

C;

Dynamic scheduling (000 execution)

Allows executions to be rearranged at runtime (also called Out of Order, or
000)

Advantages:

Pipeline-agnostic (code written/compiled for one uarch can work
efficiently on OO0 uarch)

Allows handling of dependences that can’t be resolved by compiler
Allows code to execute during delay (e.g. cache miss, div, floating point)

Much more complex! But worth it in modern systems

Example

div t0, t1, t2
add t3, t0, t4
sw t3, 0(s0)

sub t4, t5, t6
mul t3, t5, t4

In-order pipeline will stall to allow div instruction to finish

Can we do better? What are the dependences?

®

Details of 000 execution

In-order issue
Potentially out-of-order completion

Between the time when an instruction is issued and when it completes, it
is in execution (in flight)

Multiple instructions can be in flight at the same time, either due to
multiple functional units (ALUs, FPUs, etc) or due to pipelining

(xwe'll redraw this

HOW? Split up ID Stage picture next week)

Six-stage pipelined CPU (built in CS1952y!)

Issue Read ops Functional units
addix0x0 0 addix0 x0 0 addi x0 x0 / —e—== ™ addi x0x0 0
stage _stage .
IF/ID ID/RR ID/Ex Mult/Div Ex/Mem Mem/V
] decode —Xr / = rd id S j—f—l:dcjd'-]l -g_:-
pc_reg instr_menm rd1 eg_ire — g
v s L 9 W
instr instr opcode}— D wr_en t—| req1 Mem
O =] oo e | u
Instructions e [S e N ALU A
fetchedinto ° N .
register (as | Wienie . i—P
plctured) or Dependgnces . hazard: (Y] '
queue between issued reod'ops, y
K instrs detected || continue 4
7 here! "9:' 1 FPU

®

Early 000: scoreboarding

Fascinating history of CDC 6600

Keep track of dependences
between in-flight instructions and
fetched instructions using
dependency matrices

Issue a fetched instruction only
when no dependences arise

But this is really restrictive: we can
do better

By Jitze Couperus - Flickr. Supercomputer - The
Beginnings, CC BY 2.0, link

https://commons.wikimedia.org/w/index.php?curid=19382150
https://archive.computerhistory.org/resources/text/CDC/cdc.6600.thornton.design_of_a_computer_the_control_data_6600.1970.102630394.pdf

®

Tomasulo’s algorithm intuition

Developed by Robert Tomasulo for IBM 360/91
Minimize RAW hazards by tracking data dependences and reordering
Minimize WAR and WAW hazards by register renaming

Limited to code within basic blocks (we’ll come back to branching soon)

div tO, t1, t2 ‘ .)
What if the div tO, t1, t2 div tO, t1, t2

add 43, t0, t4
P s o5 JRISWAIS | add X, to, t4 sub Y, t5, t6
(SUb t4, t5, +6 temporqry SW X, 0(50) N\/ mUl t3, t5, Y

' \
Smul t3, t5, “t4 reglr']s;e\r(i,x sub Y, t5, te__/ add X, t0, t4
; mul t3, t5, Y sw X, 0(s0)

now the div might have enough time
to write to t0O before add needs it!

