
Out of
order
execution;
advanced
branch
prediction

5s pipeline when assume not taken
addi t0, t0, 1 IF ID EX Mem WB

addi t2, t2, -1 IF ID EX M W

bne, t2, x0, l2 IF ID EX M W

slli t0, t0, 1 IF ID EX

addi t1, t1, -1 IF ID

bne t1, x0, x11 IF

addi t0, t0, 1 IF ID EX M W

addi t2, t2, -1 IF ID EX M W

bne t2, x0, l2 IF ID EX M W

slli t0, t0, 1 IF ID

Waste 3
cycles on 2 of

every 3
iterations

(6 cycles/full
loop)

PC dest.
when

branch
taken

5s pipeline when assume not taken
addi t1, t1, -1 IF ID

bne t1, x0, x11 IF

addi t0, t0, 1 IF ID EX M W

addi t2, t2, -1 IF ID EX M W

bne t2, x0, l2 IF ID EX M W

slli t0, t0, 1 IF ID EX M W

addi t1, t1, -1 IF ID EX M W

bne t1, x0, x11 IF ID EX M W

not taken

Works great for outer loop (one misprediction and then 400
correct predictions)

Works less great for inner loop:

1-bit BPB entry
Waste 3

cycles on 2 of
every 3

iterations
(6 cycles/full

loop)

2 bits can keep track of 4 states: strong taken, weak taken, weak not taken,
strong not taken

Keeps some of history (means branch prediction needs to be wrong twice
instead of once before changing) – works better for the inner loop!

2-bit BPB entry

Waste 3
cycles on
every 3rd
iteration

(3
cycles/full

loop)Assumes instruction
can be fetched in the

next cycle (fast target
calculation)

Cache for computing branch target address (new PC)

Potentially faster to fetch next instruction

Common in modern systems; unlike branch delay slots

Multiple ways to set this up (see Agner document)

Multiple levels

Different behavior for different types of branches/jumps

Branch target buffers

if (x == 2) // branch A

 x = 0;

if (y == 2) // branch B

 y = 0;

if (x != y) // branch C

 …

Correlated branches

A taken and B taken
implies C not taken!
→ branch outcomes

are often not
independent of each

other

? ? ?
How would we design a branch predictor that

can handle correlated branches?

Correlating predictors

Tournament branch predictors
Run multiple branch predictors at once

Keep track of which one is doing better (using eg 2-bit predictor!) and use
that one

H&P fig. 3.4

Modern branch prediction
Agner document

H&P talking about i7:

small first-level predictor to handle cost of predicting at every cycle

larger second-level predictor “as a backup”

combines two-bit, global, and loop exit predictors in tournament

https://www.agner.org/optimize/microarchitecture.pdf

The ~future~
B. Burgess,
"Samsung exynos
M1 processor,"
2016 IEEE Hot
Chips 28
Symposium
(HCS), Cupertino,
CA, USA, 2016, pp.
1-18, doi:
10.1109/HOTCHIPS.
2016.7936205.

link

https://ieeexplore.ieee.org/document/7936205

Dynamic scheduling (OOO execution)
Allows executions to be rearranged at runtime (also called Out of Order, or
OOO)

Advantages:

Pipeline-agnostic (code written/compiled for one uarch can work
efficiently on OOO uarch)

Allows handling of dependences that can’t be resolved by compiler

Allows code to execute during delay (e.g. cache miss, div, floating point)

Much more complex! But worth it in modern systems

div t0, t1, t2
add t3, t0, t4
sw t3, 0(s0)
sub t4, t5, t6
mul t3, t5, t4

In-order pipeline will stall to allow div instruction to finish

Can we do better? What are the dependences?

Example

In-order issue

Potentially out-of-order completion

Between the time when an instruction is issued and when it completes, it
is in execution (in flight)

Multiple instructions can be in flight at the same time, either due to
multiple functional units (ALUs, FPUs, etc) or due to pipelining

Details of OOO execution

How? Split up ID stage

Dependences
between issued
instrs detected

here!

Instructions
fetched into
register (as
pictured) or

queue

When no
hazard:

read ops,
continue

ALU

ALU

FPU

Mem

Mult/Div

(*we’ll redraw this
picture next week)

Early OOO: scoreboarding

By Jitze Couperus - Flickr: Supercomputer - The
Beginnings, CC BY 2.0, link

Fascinating history of CDC 6600

Keep track of dependences
between in-flight instructions and
fetched instructions using
dependency matrices

Issue a fetched instruction only
when no dependences arise

But this is really restrictive: we can
do better

https://commons.wikimedia.org/w/index.php?curid=19382150
https://archive.computerhistory.org/resources/text/CDC/cdc.6600.thornton.design_of_a_computer_the_control_data_6600.1970.102630394.pdf

Developed by Robert Tomasulo for IBM 360/91

Minimize RAW hazards by tracking data dependences and reordering

Minimize WAR and WAW hazards by register renaming

Limited to code within basic blocks (we’ll come back to branching soon)

div t0, t1, t2
add t3, t0, t4
sw t3, 0(s0)
sub t4, t5, t6
mul t3, t5, t4

Tomasulo’s algorithm intuition

What if the
hardware
had two

temporary
registers, X

and Y?

div t0, t1, t2
add X, t0, t4
sw X, 0(s0)
sub Y, t5, t6
mul t3, t5, Y

div t0, t1, t2
sub Y, t5, t6
mul t3, t5, Y
add X, t0, t4
sw X, 0(s0)

now the div might have enough time
to write to t0 before add needs it!

