
Instruction-level
parallelism

P&H fig. 5.18

P. P. Chu and R. Gottipati, "Write
buffer design for on-chip
cache," Proceedings 1994 IEEE
International Conference on
Computer Design: VLSI in
Computers and Processors,
Cambridge, MA, USA, 1994, pp.
311-316, doi:
10.1109/ICCD.1994.331913.

Iink

https://ieeexplore.ieee.org/document/331913

Hardware allows us to
speed up execution
time by performing
operations in parallel

Instruction-level parallelism: a specific type of parallelism where
multiple instructions are in progress at the same time

increases the throughput of execution

Deeper pipeline → shorter clock cycle time → more instrs/time

? ? ?
What makes ILP challenging?

addi t0, x0, 0 // t0/i = 0
addi t1, x0, 100 // t1 = 100
loop: bge t0, t1, end
slli t2, t0, 2 // t2 = t0/i * 4
add t3, a0, t2 // t3 = A + t2
add t4, a1, t2 // t4 = B + t2
lw t2, 0(t4) // t2 = B[i]
lw t4, 0(t3) // t4 = A[i]
add t4, t4, t2 // t4 = A[i] + B[i]
sw t4, 0(t3) // A[i] = A[i] + B[i]
addi t0, t0, 1 // t0/i++
j loop
end: nop

Basic blocks

for (int i = 0; i < 100; i++) {
 A[i] = A[i] + B[i];
}

Sequence of
instructions

between
branches/jumps

slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
sw t4, 0(t3)
addi t0, t0, 1

Where’s the hazard?

Same result, lower CPI (1.44/1.35)
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
sw t4, 0(t3)
addi t0, t0, 1

slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
addi t0, t0, 1
add t4, t4, t2
sw t4, 0(t3)

slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
sw t4, 0(t3)
add t4, t4, t2
addi t0, t0, 1

We could have the compiler do this
or

We could have the CPU do this

Either way: how do we maintain
correctness?

instruction j is data dependent
on instruction i when:

1) instruction i produces a
result that may be used by
instruction j

or

2) Instruction j is data
dependent on instruction k,
and instruction k is data
dependent on instruction i

Data dependences (H&P 3.1.2.1)
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
sw t4, 0(t3)
addi t0, t0, 1

don’t reorder these!!!

Dependences where no flow of
data exists between
instructions i and j

Antidependence: instruction j
writes a register or memory
location that instruction i
reads.

Output dependence:
instructions i and j write to the
same register or memory
location

Name dependences (H&P 3.1.2.2)
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
sw t4, 0(t3)
addi t0, t0, 1

also don’t reorder these!!!

The pipelines we saw needed to stall on a RAW (read after write) hazard

lw t4, 0(t3)
add t4, t4, t2

Depending on the processor configuration, there may also be:

WAW (write after write) hazards: possible in pipelines that write in
multiple stages

WAR (write after read) hazards: not an issue in modern in-order
pipelines (reads happen before writes), but arise in out-of-order
processors due to antidependences

Data hazard classification

div t0, t1, t2
add t3, t0, t4
sw t3, 0(s0)
sub t4, t5, t6
mul t3, t5, t4

In-order pipeline will stall to allow div instruction to finish

Can we do better? What are the dependences?

Another example

Dynamic scheduling (OOO execution)
Allows executions to be rearranged at runtime (also called Out of Order, or
OOO)

Advantages:

Pipeline-agnostic (code written/compiled for one uarch can work
efficiently on OOO uarch)

Allows handling of dependences that can’t be resolved by compiler

Allows code to execute during delay (e.g. cache miss, div, floating point)

Much more complex! But worth it in modern systems

In-order issue

Potentially out-of-order completion

Between the time when an instruction is issued and when it completes, it
is in execution (in flight)

Multiple instructions can be in flight at the same time, either due to
multiple functional units (ALUs, FPUs, etc) or due to pipelining

Details of OOO execution

How? Split up ID stage

Dependences
between issued
instrs detected

here!

Instructions
fetched into
register (as
pictured) or

queue

When no
hazard:

read ops,
continue

ALU

ALU

FPU

Mem

Mult/Div

(*we’ll redraw this
picture later)

Early OOO: scoreboarding

By Jitze Couperus - Flickr: Supercomputer - The
Beginnings, CC BY 2.0, link

Fascinating history of CDC 6600

Keep track of dependences
between in-flight instructions and
fetched instructions using
dependency matrices

Issue a fetched instruction only
when no dependences arise

But this is really restrictive: we can
do better

https://commons.wikimedia.org/w/index.php?curid=19382150
https://archive.computerhistory.org/resources/text/CDC/cdc.6600.thornton.design_of_a_computer_the_control_data_6600.1970.102630394.pdf

Developed by Robert Tomasulo for IBM 360/91

Minimize RAW hazards by tracking data dependences and reordering

Minimize WAR and WAW hazards by register renaming

div t0, t1, t2
add t3, t0, t4
sw t3, 0(s0)
sub t4, t5, t6
mul t3, t5, t4

Tomasulo’s algorithm intuition

What if the
hardware

could track
dependences

and
temporarily

store results? now the div might have enough time
to write to t0 before add needs it!

div rd s1 s2

add rd s1 s2

sw s1 s2

sub rd s1 s2

mul rd s1 s2

