
Instruction-level
parallelism; data
and control
dependences

P&H fig. 5.18

P. P. Chu and R. Gottipati, "Write
buffer design for on-chip
cache," Proceedings 1994 IEEE
International Conference on
Computer Design: VLSI in
Computers and Processors,
Cambridge, MA, USA, 1994, pp.
311-316, doi:
10.1109/ICCD.1994.331913.

Iink

https://ieeexplore.ieee.org/document/331913

Hardware allows us to
speed up execution
time by performing
operations in parallel

Instruction-level parallelism: a specific type of parallelism where
multiple instructions are in progress at the same time

increases the throughput of execution

Deeper pipeline → shorter clock cycle time → more instrs/time

? ? ?
What makes ILP challenging?

addi t0, x0, 0 // t0/i = 0
addi t1, x0, 100 // t1 = 100
loop: bge t0, t1, end
slli t2, t0, 2 // t2 = t0/i * 4
add t3, a0, t2 // t3 = A + t2
add t4, a1, t2 // t4 = B + t2
lw t2, 0(t4) // t2 = B[i]
lw t4, 0(t3) // t4 = A[i]
add t4, t4, t2 // t4 = A[i] + B[i]
sw t4, 0(t3) // A[i] = A[i] + B[i]
addi t0, t0, 1 // t0/i++
j loop
end: nop

Where’s the hazard?

for (int i = 0; i < 100; i++) {
 A[i] = A[i] + B[i];
}

Same result, lower CPI (1.44/1.35)

addi t0, x0, 0
addi t1, x0, 100
loop: bge t0, t1, end
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
sw t4, 0(t3)
addi t0, t0, 1
j loop
end: nop

addi t0, x0, 0
addi t1, x0, 100
loop: bge t0, t1, end
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
addi t0, t0, 1
add t4, t4, t2
sw t4, 0(t3)
j loop
end: nop

addi t0, x0, 0
addi t1, x0, 100
loop: bge t0, t1, end
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
sw t4, 0(t3)
add t4, t4, t2
addi t0, t0, 1
j loop
end: nop

We could have the
compiler do this

or
We could have the

CPU do this

Either way: how do
we maintain
correctness?

instruction j is data dependent
on instruction i when:

1) instruction i produces a
result that may be used by
instruction j

or

2) Instruction j is data
dependent on instruction k,
and instruction k is data
dependent on instruction i

→ i should happen before j

Data dependences (H&P 3.1.2.1)
addi t0, x0, 0
addi t1, x0, 100
loop: bge t0, t1, end
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
sw t4, 0(t3)
addi t0, t0, 1
j loop
end: nop

Dependences where no flow of
data exists between
instructions i and j

Antidependence: instruction j
writes a register or memory
location that instruction i
reads.

Output dependence:
instructions i and j write to the
same register or memory
location

→ i should happen before j

Name dependences (H&P 3.1.2.2)
addi t0, x0, 0
addi t1, x0, 100
loop: bge t0, t1, end
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
sw t4, 0(t3)
addi t0, t0, 1
j loop
end: nop

The pipelines we saw needed to stall on a RAW (read after write) hazard

lw t4, 0(t3)
add t4, t4, t2

Depending on the processor configuration, there may also be:

WAW (write after write) hazards: possible in pipelines that write in
multiple stages

WAR (write after read) hazards: not an issue in modern in-order
pipelines (reads happen before writes), but arise in out-of-order
processors due to antidependences

Data hazard classification

addi t0, x0, 0 // t0/i = 0
addi t1, x0, 100 // t1 = 100
loop: bge t0, t1, end
slli t2, t0, 2 // t2 = t0/i * 4
add t3, a0, t2 // t3 = A + t2
add t4, a1, t2 // t4 = B + t2
lw t2, 0(t4) // t2 = B[i]
lw t4, 0(t3) // t2 = A[i]
add t4, t4, t2 // t4 = A[i] + B[i]
sw t4, 0(t3) // A[i] = A[i] + B[i]
addi t0, t0, 1 // t0/i++
j loop
end: nop

Basic blocks

Sequence of
instructions

between
branches/jumps

? ? ?
What else could we parallelize here?

for (int i = 0; i < 100; i++) {
 A[i] = A[i] + B[i];
}

It’s possible to parallelize
across basic blocks –

we’ll come back to this in a
few days

addi t0, x0, 0 // t0/i = 0
addi t1, x0, 100 // t1 = 100
loop: bge t0, t1, end
slli t2, t0, 2 // t2 = t0/i * 4
add t3, a0, t2 // t3 = A + t2
add t4, a1, t2 // t4 = B + t2
lw t2, 0(t4) // t2 = B[i]
lw t4, 0(t3) // t2 = A[i]
add t4, t4, t2 // t4 = A[i] + B[i]
sw t4, 0(t3) // A[i] = A[i] + B[i]
addi t0, t0, 1 // t0/i++
j loop
end: nop

Where else is the hazard?

We reduced CPI by about
6% by reordering… but the

real culprit keeping CPI > 1 is
the branch and jump!

We can use hardware to
compute jump addresses

earlier (P&H 4.8) … but there
will still be at least one

cycle wasted

addi t0, x0, 0 // t0/i = 0
addi t1, x0, 100 // t1 = 100
loop: bge t0, t1, end
slli t2, t0, 2 // t2 = t0/i * 4
add t3, a0, t2 // t3 = A + t2
add t4, a1, t2 // t4 = B + t2
lw t2, 0(t4) // t2 = B[i]
lw t4, 0(t3) // t4 = A[i]
add t4, t4, t2 // t4 = A[i] + B[i]
sw t4, 0(t3) // A[i] = A[i] + B[i]
addi t0, t0, 1 // t0/i++
j loop
end: nop

if x:
P1 // depends on x, not y

if y:
P2 // depends on y, not x

Control dependences

When dealing with control dependences:

1) instruction dependent on branch should not be moved before branch
2) instruction not dependent on branch should not be moved after branch

But this is pretty restrictive… instead, we may allow for instructions to be
executed (or partially executed) as long as we can preserve the correctness

of the program somehow

Branch delay slot

Along w/ hardware, this helps us
basically hide the cost of

unconditional jumps

What about branches?

Some architectures execute
one instruction immediately
after a branch/jump instruction
(regardless if the branch is
taken)

Up to compiler and/or CPU to
move an independent
instruction into that slot

addi t0, x0, 0
addi t1, x0, 100
loop: bge t0, t1, end
(some independent instr from earlier)
slli t2, t0, 2
add t3, a0, t2
add t4, a1, t2
lw t2, 0(t4)
lw t4, 0(t3)
add t4, t4, t2
addi t0, t0, 1
j loop
sw t4, 0(t3)
end: nop

We’ve already done this, sort of!

What if this had
been a branch?
What would the

cycle penalty have
been if the branch

weren’t taken?

In a way, our pipeline initially
predicts that a branch won’t be

taken (and flushes if that
prediction ends up being wrong)

? ? ?
Can we do better than “predict branch not

taken?”

addi t0, x0, 0 // t0 = 0
addi t1, x0, 400 // t1 = 400
l1: addi t2, x0, 3 // t2 = 3
l2: addi t0, t0, 1 // t0++
addi t2, t2, -1 // t2--
bne t2, x0, l2 // loop while t2 > 0
slli t0, t0, 1 // t0 <<= 1
addi t1, t1, -1 // t1--
bne t1, x0, l1 // loop while t1 > 0

Double-loop code Dynamic branch prediction:
CPU can choose to predict

(keep executing as if)
branch is taken OR branch

is not taken

Flushes instructions if it’s
wrong

How? Keep a Branch
Prediction Buffer (Branch
History Table) that maps
branch instr addresses to

predictions

Works great for outer loop (one misprediction and then 400 correct
predictions)

Works less great for inner loop:

1-bit BPB entry

2 bits can keep track of 4 states: strong taken, weak taken, weak not taken,
strong not taken

Keeps some of history (means branch prediction needs to be wrong twice
instead of once before changing) – works better for the inner loop!

2-bit BPB entry

