
ISAs
revisited

Resources/readings
Intel® 64 and IA-32 Architectures Software Developer Manuals

Arm A64 Instruction Set Architecture

RISC and CISC comparison paper (1991)

RISC vs CISC power struggles paper (2013)

Agner Fog’s instruction tables (for uop analysis)

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/ddi0596/latest/
https://dl.acm.org/doi/pdf/10.1145/106972.107003
https://research.cs.wisc.edu/vertical/papers/2013/hpca13-isa-power-struggles.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Terminology review
ISA (Instruction set architecture): interface between high-level
programming language and hardware

Instructions

Registers

Memory models

I/O model

Microarchitecture: hardware implementation of ISA

Today: how do different ISAs compare? Does choice of ISA limit HW
performance?

Single-register architecture (register called “accumulator”)

All arithmetic operations have the accumulator as source and destination

e.g. ADD 200 means: add value at mem. address 200 to accumulator and
store result in accumulator

Born of necessity (registers were expensive!)

Fun reading: PDP-8 instruction set

Back in the day: accumulator architectures

https://homepage.cs.uiowa.edu/~jones/pdp8/man/mri.html

How does new PC get determined?

RISCV jumps (not branches): direct (jal) and indirect (jalr)

How does comparison get computed?

RISCV: comparison and branch in one instruction

x86, arm: compare, then branch (cmp eax 0, jne end)

Requires status/flag/condition code register

Related: predicated instructions (we’ll come back to this for DLP)

Different approaches to branching

image source

https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/NZCV--Condition-Flags

(from Intel manual linked
on first slide)

Load/store or register-register architectures: all arithmetic operations
done in registers (need to load from memory into register first)

RISC-V, MIPS, Arm

Register-memory architectures: arithmetic operations can be done
using combination of registers and memory addrs

x86

Different approaches to memory

RISCV

ADD, ADDW (32-bit add), ADDI, ADDIW

Armv8

Same mnemonic (ADD), different machine instructions

 ADD W0, W1, W2 (32-bit) ADD X0, X1, X2 (64-bit) ADD X0, X1, W2, SXTW
(sign-extended) ADD X0, X1, #42

Comparing 64-bit ADD instructions

image
source

https://developer.arm.com/documentation/den0024/a/ARMv8-Registers
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers

x86-64 ADD

? ? ?
What would we have to
add to our single-stage
processor to implement
the x86 add variations?

RISC-V, MIPS, Arm are RISC (Reduced Instruction Set Computer)
architectures

x86 is CISC (Complex Instruction Set Computer) architecture

Typically a larger set of instructions

Allows register-memory instrs

Allows variable-length instruction encodings

Allows instructions that take longer than 1 cycle

Except… this distinction is becoming less useful

Blem et al. paper summed up: it’s up to the microarchitecture

Classification of ISAs: RISC/CISC

RISC CISC

What’s typically the case?

More complicated
decoder

Larger code size

Pipelining is harder

Single instruction
takes more work

Fewer available GPRs

Translation of complex machine instruction (macro-op) to multiple steps

Microarchitecture dependent (Intel doesn’t provide documentation on this)

For example, addq 8(%rdi) %rax might be translated into:

add 8 to rdi

load that address from memory

add that value to rax

store the result in rax

We will come back to this for out-of-order

Micro-ops

CISC becomes RISC-ier: control unit
has an easier job with each uop; in

turn makes pipelining easier

In practice, compilers such as gcc
also prioritize the RISC-er instructions

(Blem et al paper)

? ? ?
Why does x86 have so many instructions?

Extending ISAs
image source

RISC becomes CISC-ier!

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/five-things-you-may-not-know-about-arm-cortex-m

? ? ?
Why might a variable-length instruction

encoding be useful?

Sometimes used for embedded applications

RISC-V C extension
RISC becomes CISC-ier!

? ? ?
Why were new ISAs after about 1982 mostly

RISC?

Arm claims 99% of premium smartphones use their chips

Prioritizes low energy over performance

Licenses chips + gets royalties instead of manufacturing chips

Apple’s switch from x86 to Arm driven by need for flexibility

Already were making Arm-based chips for iPhones and iPads

Don’t need to rely on manufacturing issues (deadlines, quality
control) of other company

Intel used to power through based on market dominance

IBM’s adoption of Intel in the 80s fueled rise

Intel in turn was able to spend more $$ on R&D

Arm vs. Intel: market incentives

https://www.arm.com/markets/consumer-technologies/smartphones

While our study shows that RISC and CISC ISA traits are irrelevant to power and
performance characteristics of modern cores, ISAs continue to evolve to better
support exposing workload-specific semantic information to the execution substrate.
On x86, such changes include the transition to Intel64 (larger word sizes, optimized
calling conventions and shared code support), wider vector extensions like AVX, integer
crypto and security extensions (NX), hardware virtualization extensions and, more
recently, architectural support for transactions in the form of HLE. Similarly, the ARM ISA
has introduced shorter fixed length instructions for low power targets (Thumb), vector
extensions (NEON), DSP and bytecode execution extensions (Jazelle DBX), Trustzone
security, and hardware virtualization support. Thus, while ISA evolution has been
continuous, it has focused on enabling specialization and has been largely agnostic of
RISC or CISC. Other examples from recent research include extensions to allow the
hardware to balance accuracy and reliability with energy efficiency [15, 13] and
extensions to use specialized hardware for energy efficiency [18].

Concluding remarks from Blem et al

