ISASs
revisited

oooooo

e O e e & e

Resources/readings

Intel® 64 and IA-32 Architectures Software Developer Manudls

Arm A64 Instruction Set Architecture

RISC and CISC comparison paper (1991)

RISC vs CISC power struggles paper (2013)

Agner Fog's instruction tables (for uop analysis)

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/ddi0596/latest/
https://dl.acm.org/doi/pdf/10.1145/106972.107003
https://research.cs.wisc.edu/vertical/papers/2013/hpca13-isa-power-struggles.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Texrminology review

ISA (Instruction set architecture): interface between high-level
programming language and hardware

Instructions
Registers
Memory models

1/O model

Microarchitecture: hardware implementation of ISA

®
Back in the day: accumulator architectures

Single-register architecture (register called “accumulator”)
All arithmetic operations have the accumulator as source and destination

e.g. ADD 200 means: add value at mem. address 200 to accumulator and
store result in accumulator

Born of necessity (registers were expensive!)

Fun reading: PDP-8 instruction set

https://homepage.cs.uiowa.edu/~jones/pdp8/man/mri.html

®

Different approaches to branching

How does new PC get determined?

RISCV jumps (not branches): direct (jal) and indirect (jalr)
How does comparison get computed?

RISCV: comparison and branch in one instruction

x86, arm: compare, then branch (cmp eax 9, jne end)

Requires status/flag/condition code register

Related: predicated instructions (we'll come back to this for DLP)

63 32

Image source 527 — 0

https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/NZCV--Condition-Flags

X
X
X
X

XOUW VOO MXXOnXXXX

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

| o}
Ojojojojofof0(OfOfOfpf! £

AlvV
C[M|F

-
~o0-—

A
F

Cc
E

ID Flag (ID} |
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF)

Alignment Check / Access Control (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
I/O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DFY

Interrupt Enable Flag (IF)

Trap Flag (TF)

Sign Flag (SF)

Zero Flag (ZF)
Auxiliary Carry Flag (AF)

Parity Flag (PF)

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-8. EFLAGS Register

(from Intel manual linked
on first slide)

(7

®

Diffexrent approaches to memory

Load/store or register-register architectures: all arithmetic operations
done in registers (need to load from memory into regjister first)

RISC-V, MIPS, Arm

Register-memory architectures: arithmetic operations can be done
using combination of registers and memory addrs

x86

®

Comparing 64-bit ADD instructions

RISCV

ADD, ADDW (32-bit add), ADDI, ADDIW

Armvs8

Same mnemonic (ADD), different machine instructions source

ADD WO, W1, W2 (32-bit) ADD X0, X1, X2 (64-bit) ADD X0, X1, W2, SXTW
(sign-extended) ADD XO, X1, #42

Each AArché4 64-bit general-purpose register (X0-X30) also has a 32-bit (W0-W30) form.

Figure 4.2. 64-bit register with W and X access.

https://developer.arm.com/documentation/den0024/a/ARMv8-Registers
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers

x86-64 ADD

ADD—Add
Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
04 ib ADD AL, imm8 | Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 | Valid Valid Add imm16 to AX.
05id ADD EAX, imm32 | Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 | Valid N.E. Add imm32 sign-extended to 64-bits to RAX.
80/0ib ADD r/m8, imm8 Ml |Valid Valid Add imm8 to r/m8.
REX +80/0ib ADD r/m8 , imm8 Ml | Valid N.E. Add sign-extended imm8 to r/m8.
81/0iw ADD r/m16, imm16 Ml |Valid Valid Add imm16 to r/m16.
81/0id ADD r/m32, imm32 Ml |Valid Valid Add imm32 to r/m32.
REXW +81/0id ADD r/m64, imm32 Ml |Valid N.E. Add imm32 sign-extended to 64-bits to
r/m64.

83/0ib ADD r/m16, imm8 Ml |Valid Valid Add sign-extended imm8 to r/m16.
83/0ib ADD r/m32, imm8 Ml | Valid Valid Add sign-extended imm8 to r/m32.
REX.W +83/0ib ADD r/m64, imm8 Ml | Valid N.E. Add sign-extended imm8 to r/m64.
00 /r ADD r/m8, r8 MR |Valid Valid Add r8 to r/m8.
REX +00 /r ADD r/m8,r8 MR |Valid N.E. Add r8 to r/m8.
0o1/r ADDr/m16,r16 MR |Valid Valid Addr16 tor/m16.
01/r ADD r/m32, r32 MR |Valid Valid Add r32 to r/m32.
REXW +01 /r ADD r/m64, r64 MR |Valid N.E. Add r64 to r/m64.
02/r ADD r8, r/m8 RM |Valid Valid Add r/m8 to r8.
REX +02 /r ADDr8 , r/m8 RM |Valid N.E. Add r/m8 to r8.
03/r ADD 16, r/m16 RM | Valid Valid Add r/m16 tor16.
03/r ADD r32, r/m32 RM | Valid Valid Add r/m32 to r32.

ADD r64, r/m64 RM |Valid N.E. Add r/m64 to r64.

REXW + 03 /r

What would we have to
add to our single-stage
processor to implement
the x86 add variations?

decode

== instr

rd1

/ r1_addr
rsl / r2_addr
rs2 —/_____,_,._-—-— wr_addf

l_registers
data_in r1_out

wr_en

r2_out

imm_|

opcode|

funct3
funct7

control

opcode

funct3 alu2_sel

ALU2Sel

ALUOD‘

funct7 alu_ctrl

zero

C;

Classification of ISAs: RISC/CISC

RISC-V, MIPS, Arm are RISC (Reduced Instruction Set Computer)
architectures

x86 is CISC (Complex Instruction Set Computer) architecture
Typically a larger set of instructions
Allows register-memory instrs
Allows variable-length instruction encodings
Allows instructions that take longer than 1 cycle

Excepit... this distinction is becoming less useful

Blem et al. paper summed up: it's up to the microarchitecture

What's typically the case?

Larger code size

Pipelining is harder

Single instruction
takes more work

Fewer available GPRs

More complicated
decoder

Micro-ops

Translation of complex machine instruction (macro-op) to multiple steps
Microarchitecture dependent (Intel doesn’t provide documentation on this)
For example, addq 8(%rdi) %rax might be translated into:

add 8 to rdi

load that address from memory

add that value to rax

store the result in rax

We will come back to this for out-of-order

Why does x86 have so many instructions?

e

Extending ISAs

SERERIEL image source
Extending RISC-V Powerful & Scalable Instruction Set
Base Version
RV321I 2.0
RV32E 1.9
RV641 2.0
RV1281 | 1.7 %
EXtenSion VerSion FC? OSMULAWT SMLSD SMLSLD SMMLA SMMLS 0 SMMUL 0 SMUAD sMULes
C ADE > C_ ADD. > ¢ AR - — AMD. - (AR D¢ B CosMOT
F 2:() 8 C— Advanced data processing S— o ossume
2 —— Bit field manipulations —— © waane
D 2.0 05 N O omM —_
Q 2.0 5 . omm oruse
L 0.0 g KT X VS IR ©oumsuel
B 0'0 =
o 8 COETRMTCTD CIETRED . vasuss
L& 4 $ Cortex-M3 Cortex-M4
\Y 0.2
o \ N 1.1

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/five-things-you-may-not-know-about-arm-cortex-m

Why might a variable-length instruction
encoding be useful?

RISC-V C extension

Sometimes used for embedded applications

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

the immediate or address offset is small, or

one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack
pointer (x2), or

the destination register and the first source register are identical, or

the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension
allows 16-bit instructions to be freely intermixed with 32-bit instructions, with the latter now able
to start on any 16-bit boundary. With the addition of the C extension, JAL and JALR instructions
will no longer raise an instruction misaligned exception.

Why were new ISAs after about 1982 mostly
RISC?

®

Arm vs. Intel: market incentives

Arm claims 99% of premium smartphones use their chips

Prioritizes low energy over performance

Licenses chips + gets royalties instead of manufacturing chips
Apple’s switch from x86 to Arm driven by need for flexibility

Already were making Arm-based chips for iPhones and iPads

Don't need to rely on manufacturing issues (deadlines, quality
control) of other company

Intel used to power through based on market dominance
IBM’s adoption of Intel in the 80s fueled rise

Intel in turn was able to spend more $$ on R&D

https://www.arm.com/markets/consumer-technologies/smartphones

®

Concluding remarks from Blem et al

While our study shows that RISC and CISC ISA traits are irrelevant to power and
performance characteristics of modern cores, ISAs continue to evolve to better
support exposing workload-specific semantic information to the execution substrate.
On x86, such changes include the transition to Intel64 (larger word sizes, optimized
calling conventions and shared code support), wider vector extensions like AVX, integer
crypto and security extensions (NX), hardware virtualization extensions and, more
recently, architectural support for transactions in the form of HLE. Similarly, the ARM ISA
has introduced shorter fixed length instructions for low power targets (Thumb), vector
extensions (NEON), DSP and bytecode execution extensions (Jazelle DBX), Trustzone
security, and hardware virtualization support. Thus, while ISA evolution has been
continuous, it has focused on enabling specialization and has been largely agnostic of
RISC or CISC. Other examples from recent research include extensions to allow the
hardware to balance accuracy and reliability with energy efficiency [15, 13] and
extensions to use specialized hardware for energy efficiency [18].

