
I/O and exceptions



? ? ?
Besides the cache/memory management unit, 

what sorts of things does the processor need 
to talk to?



Abstraction of I/O

BUS

image source: flaticon.com



History of I/O: Plugboard computers (ENIAC, <1946)



History of I/O: UNIVAC 1 (1951)

image source

image source

https://en.wikipedia.org/wiki/UNIVAC_I
https://en.wikipedia.org/wiki/UNIVAC_I


History of I/O: IBM System/360 (>=1964)

image source
image source

https://www.computerhistory.org/revolution/mainframe-computers/7/161/565
https://en.wikipedia.org/wiki/IBM_System/360


History of I/O: PDP-8 (>=1965)

image source

image source

https://en.wikipedia.org/wiki/PDP-8
https://www.pdp8online.com/pdp8i/pics/pdp8ibackplane.shtml?small


VAX11: Successor to the PDP (1977)

source (VAX11 hardware user’s guide)
image source

https://bitsavers.org/pdf/dec/vax/780/EK-11780-UG-001_VAX-11_780_Hardware_Users_Guide_197902.pdf
https://gordonbell.azurewebsites.net/digital/timeline/1974-3.htm


History of I/O: Intel 4004/MCS-4 (1971)

image source

https://en.wikichip.org/wiki/intel/mcs-4


History of I/O: IBM PC (1981)



Motherboards

image source

Motherboard: printed circuit 
board (PCB) that holds 
computer components

Chipset: (usually on mobo) 
circuit that manages 
connection of CPU w/ 
memory and peripherals

https://en.m.wikipedia.org/wiki/File:Acer_E360_Socket_939_motherboard_by_Foxconn.svg


Chipsets (1990s-2000s)
Northbridge: connects CPU, RAM, GPU

Southbridge: slower, connects I/O

image source

image source

https://en.wikipedia.org/wiki/Northbridge_(computing)
https://en.wikipedia.org/wiki/Chipset


Evolution of chipsets (Intel)

image source

image source

https://www.intel.com/content/www/us/en/products/docs/chipsets/desktop-chipsets/z790-chipset-brief.html
https://www.intel.com/content/www/us/en/products/platforms/details/skylake-u-y.html


There are many ways to transfer data

Different bus standards are used for different applications

SATA is used for storage (also NVME)

PCI/e is used for many things (GPU, sound, ethernet…)

SPI is used for serial embedded communication

We’re not going to memorize these technologies – just know that there 
are different protocols for them

Buses



? ? ?
How does a CPU access an I/O bus? There’s no 

lio or sio instruction in RISCV…



Memory-mapped I/O: hardware translation of some memory addresses to 
status and control registers of I/O devices

CPU writes/reads that address as usual, gets info about device

Kernel-space (not user-space) addresses

Contrast with port-mapped I/O: special instructions to access I/O ports

x86 in and out instructions (x86 supports both port- and 
memory-mapped I/O; see chapter 19 of the Intel 64 manual)

Memory-mapped I/O

https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html




Cumbersome idea: use processor to transfer data from user space to 
memory-mapped I/O space

Supervisor transfers pages from disk using 1k lw + sw instructions

Direct Memory Access (DMA) transfers data to and from memory 
without going through the CPU, using the controller of the I/O device

Bypassing CPU for memory access

PCIe uses an optimized version of DMA that involves 
bus arbitration

image source

https://en.wikipedia.org/wiki/PCI_Express


? ? ?
How should an I/O event (such as a keyboard 

key press) be detected and handled by the 
computer?



Manually check the status of I/O 
device periodically

Pros:

Check message app over and 
over for your crush to text you

Polling Interrupts
Disrupt CPU execution when an 
I/O operation happens

Pros:

Get push notification that your 
crush has texted you



Exception: unscheduled event that disrupts execution (P&H chapter 4)

SW source: RISC-V ecall/ebreak instructions to invoke supervisor/debugger

HW source: divide by 0 or page fault

Interrupt: an exception that comes from outside the CPU

DMA I/O interrupt

Warning: terminology changes depending on textbook/context

What does the CPU hardware need to do when an exception happens?

Exceptions vs Interrupts



1) Figure out if we need to stop immediately or finish current instruction

Hardware exceptions: immediately (can’t proceed after dividing by 0)

I/O interrupts: handle asynchronously (finish instruction)

2) Save processor state and provide exception info to supervisor
3) Switch control to supervisor
4) Go to PC of exception-handling routine
5) Handle exception
6) Switch back

Handling exceptions



SEPC holds address of exception-causing instr

SCAUSE holds the cause

STVAL holds info about exception (e.g. 
fault-causing virtual address)

SIP holds pending status of potential interrupts

STVEC holds address of supervisor 
exception-handler

Alternative approach: vectored interrupts (arm)

RISC-V exception registers

RISC-V spec v2 Table 4.2



1) Figure out if we need to stop immediately or finish current instruction

Hardware exceptions: immediately (can’t proceed after dividing by 0)

I/O interrupts: handle asynchronously (finish instruction) SIP

2) Save processor state and provide exception info to supervisor

SCAUSE, STVAL, SEPC

3) Switch control to supervisor
4) Go to PC of exception-handling routine STVEC
5) Handle exception (uses info stored in SCAUSE, STVAL)
6) Switch back SRET instruction (uses info stored in SEPC)

Handling exceptions


