The perils of
shared and unshared
caches (coherence,
side channels)
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https://csapp.cs.cmu.edu/3e/figures.html

Cache coherence problem
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Definitions

Intuitively: want any read of an item to return most recently written value
to item

Coherence — what values can be returned by a read?

1. On a uniprocessor: reads after writes return written value

2. On a multiprocessor: reads by B after writes by A return written value
when given sufficient time

3. Two writes to same location by one processor dre seen in the same
order by all processors
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https://en.wikipedia.org/wiki/MSI_protocol
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What should happen herxe?
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What effects does block size have on
coherence protocols?



(Pivoting away from coherence)
How can processor A learn about what
processor B is doing through the shared
cache?
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Security and side channels

Security: protection against threats fromm malicious actor
Obviously a large field, this is just a taste

Side channels: Incidental information leakage inferred from observing
normal execution

Slides adapted from Sam Thomas



C;

Shared cache side channels

What precisely can CPU B learn about CPU A?

##include
#finclude <stdlib.h>

<stdlib.h> ffinclude

<stdlib.h>
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libc




Flush &

Reload attack

// flush the block
cflush OxLIBCADDR;

// wait some time

t1 = time.now();
while(time.now() - t1
< 100ns);

// access block
t2 = time.now();
X = x OxLIBCADDR;
accessTime =
time.now() - t2;

// 1f slow: unused
// if fast: used!
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Flush & Reload in the wild

So what? An attacker knows | used libc...
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Yarom, Yuval, and Katrina Falkner. "{FLUSH+
RELOADY}: A high resolution, low noise, 13
cache {Side-Channel} attack.” 23rd USENIX
security symposium (USENIX security 14).
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Figure 2: Exponentiation by Square-and-Multiply

Figure 6: Time measurements of probes


https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

What does flush & reload depend on?



Prime & Probe

Doesn’t require precise timing or access to victim’s memory; measures
cache contention (less granular)
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Caveats

It takes a /ot to instrument a side-channel attack
Often can't learn everything, but narrow down search space
What can be done to guard against attacks?

Oblivious RAM (largely theoretical)

Trusted execution

Cache partitioning

Use an abacus



