The perils of
shared and unshared
caches (coherence,
side channels)

°o Y Y Y Y -

Intel 1i7

Source

(Bryant & O’Hallaron)

Processor package

Core x4

Registers

Instruction
fetch

MMU
(addr translation)

A4

A

L1 d-TLB L1i-TLB
64 entries, 4-way 128 entries, 4-way

A4

L2 unified TLB
512 entries, 4-way

A

QuickPath interconnect

Yvy

A4

L3 unified cache
8 MB, 16-way

I

A 4

A4

DDR3 Memory controller

(shared by all cores)

A

A4

To other
cores

»i 10 /O

bridge

https://csapp.cs.cmu.edu/3e/figures.html

Cache coherence problem

CoreA$ CoreB$

x=0 x=0

Definitions

Intuitively: want any read of an item to return most recently written value
to item

Coherence — what values can be returned by a read?

1. On a uniprocessor: reads after writes return written value

2. On a multiprocessor: reads by B after writes by A return written value
when given sufficient time

3. Two writes to same location by one processor dre seen in the same
order by all processors

Snooping /-

$A

oooooooo

1. A reads x
2.Breads x

$B

Snooping

invalidate x!

........

3. A writes x

4. B reads x

Snooping

messages Lomrmon pro\oco‘: ‘!l!“

........))

https://en.wikipedia.org/wiki/MSI_protocol

® —
What should happen herxe?

$A $B
| want to | want to
write 1to x write 2 to x

What effects does block size have on
coherence protocols?

(Pivoting away from coherence)
How can processor A learn about what
processor B is doing through the shared
cache?

®

Security and side channels

Security: protection against threats fromm malicious actor
Obviously a large field, this is just a taste

Side channels: Incidental information leakage inferred from observing
normal execution

Slides adapted from Sam Thomas

C;

Shared cache side channels

What precisely can CPU B learn about CPU A?

##include
#finclude <stdlib.h>

<stdlib.h> ffinclude

<stdlib.h>

4

libc

Flush &

Reload attack

// flush the block
cflush OxLIBCADDR;

// wait some time

t1 = time.now();
while(time.now() - t1
< 100ns);

// access block
t2 = time.now();
X = x OxLIBCADDR;
accessTime =
time.now() - t2;

// 1f slow: unused
// if fast: used!

®

Flush & Reload in the wild

So what? An attacker knows | used libc...

1
2
3
4
5
6
7
8

9
10
11
12
13

Yarom, Yuval, and Katrina Falkner. "{FLUSH+
RELOADY}: A high resolution, low noise, 13
cache {Side-Channel} attack.” 23rd USENIX
security symposium (USENIX security 14).

function exponent(b, e, m .
: [RaTIRTIR 2] 2014. link
begin
x 1 e Square +
. e A
for i < |e| — 1 downto 0 do Msscdsios M
400 |-
.
X+ x° . X
X A—X mOd m :-"’é 465 _.°°G&.°°g.°"5'b°°°""W‘?e"'éw“?e%' 990,°09,.°99,0°999,000s. +298023 c088e® 84300080 ,000,
if (¢; = 1) then e)
E
X < x mod m - o
............... L P
endif Only o
done multiply B R el 8 " oo . -
. ! ! !)) : 1 .| L
return 'X' When blt IS] %900 3910 3920 3930 3940 3950 3960 3970 3980 3990 4000
end Time Slot Number

Figure 2: Exponentiation by Square-and-Multiply

Figure 6: Time measurements of probes

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

What does flush & reload depend on?

Prime & Probe

Doesn’t require precise timing or access to victim’s memory; measures
cache contention (less granular)

=

. . v
[Tjust executin’ some gp%
code [7 [} +

;3

Fill up the cache!

Juuuvu

Which ones were misses?

(
Read all addresses] <

Caveats

It takes a /ot to instrument a side-channel attack
Often can't learn everything, but narrow down search space
What can be done to guard against attacks?

Oblivious RAM (largely theoretical)

Trusted execution

Cache partitioning

Use an abacus

