
The perils of
shared and unshared
caches (coherence,
side channels)

Intel i7

Source
(Bryant & O’Hallaron)

https://csapp.cs.cmu.edu/3e/figures.html

Cache coherence problem

Core A $ Core B $

Memory x = 0

x = 0 x = 0x = 1

x = 1

Definitions
Intuitively: want any read of an item to return most recently written value
to item

Coherence – what values can be returned by a read?

1. On a uniprocessor: reads after writes return written value
2. On a multiprocessor: reads by B after writes by A return written value

when given sufficient time
3. Two writes to same location by one processor are seen in the same

order by all processors

Snooping🔎

$A $B

BUS

x = 0 x = 0

1. A reads x
2. B reads x

Snooping🔎

$A $B

BUS

x = 1 x = 0

invalidate x!

3. A writes x

Snooping🔎

$A $B

BUS

x = 1 x = 1

4. B reads x

Cache needs to keep state for each block based on bus
messages (common protocol: MSI)

https://en.wikipedia.org/wiki/MSI_protocol

What should happen here?

$A $B

BUS

x = 0 x = 0

I want to
write 1 to x

I want to
write 2 to x

? ? ?
What effects does block size have on

coherence protocols?

? ? ?
(Pivoting away from coherence)

How can processor A learn about what
processor B is doing through the shared

cache?

Security: protection against threats from malicious actor

Obviously a large field, this is just a taste

Side channels: Incidental information leakage inferred from observing
normal execution

Security and side channels

Slides adapted from Sam Thomas

What precisely can CPU B learn about CPU A?

Shared cache side channels

Memory libc

#include
<stdlib.h>
…

#include
<stdlib.h>
… #include

<stdlib.h>
…

Flush & Reload attack

Shared $

// flush the block
cflush 0xLIBCADDR;

// wait some time
t1 = time.now();
while(time.now() - t1
< 100ns);

// access block
t2 = time.now();
x = * 0xLIBCADDR;
accessTime =
time.now() - t2;

// if slow: unused
// if fast: used!

Flush & Reload in the wild
So what? An attacker knows I used libc…

Only
multiply

when bit is 1

Yarom, Yuval, and Katrina Falkner. "{FLUSH+
RELOAD}: A high resolution, low noise, l3
cache {Side-Channel} attack." 23rd USENIX
security symposium (USENIX security 14).
2014. link

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

? ? ?
What does flush & reload depend on?

Doesn’t require precise timing or access to victim’s memory; measures
cache contention (less granular)

Prime & Probe

Fill up the cache!

Read all addresses
Which ones were misses?

🎵just executin’ some
code🎵🎵

It takes a lot to instrument a side-channel attack

Often can’t learn everything, but narrow down search space

What can be done to guard against attacks?

Oblivious RAM (largely theoretical)

Trusted execution

Cache partitioning

Use an abacus

Caveats

