
Complicating
factors in caching
(tradeoffs,
coherence)

? ? ?
Which of these programs will (generally)

perform better for large values of M and N?

for (int i = 0; i < M; i++) {
 for (int j = 0; j < N; j++) {
 x[i][j] *= 2;
 }
}

for (int j = 0; j < N; j++) {
 for (int i = 0; i < M; i++) {
 x[i][j] *= 2;
 }
}

? ? ?
What options do we have when designing a

memory hierarchy?

of levels in
hierarchy block size

associativity

cache size

replacement
policy

behavior on write
(through/back;

allocate; buffers) how to find a
block

data,
instruction, or

unified

? ? ?
Pick a design space and evaluate how it impacts:

● Miss rate
● Miss penalty

● Hit time
● Other potential consequences?

block size
associativity/

finding a
block

cache size write through
vs. back

Direct-mapped caches
aren’t really used anymore
(gains from even a little bit
of associativity are high)

Fully associative caches are
costly to implement at large
sizes (why fully assoc. TLBs
are tiny)

Associativity + performance

P&H fig. 5.35

source

https://developer.arm.com/documentation/den0024/a/Caches/Cache-terminology/Set-associative-caches-and-ways

Instead of fetching one block on a miss, fetch two (required + next)

Store next block in a buffer (why?)

Used often with I-cache (why?)

Possible to have compiler support with special prefetch instructions

Downsides?

Advanced optimization: prefetching

Way prediction (hw3)

Optimize data transfer

Parallelize cache access (banked caches)

Pipeline the cache

Critical word first/early restart

Non-blocking cache (on out-of-order processors)

Yet more options

Design tradeoffs
What did we think about when designing a CPU?

In memory hierarchy, we see performance tradeoffs

Sometimes the answer is to compromise

Sometimes the answer is to innovate

Throwing hardware at the problem has limits and costs

Real world complicates things a lot

Using advanced tools like gem5 helps us navigate tradeoffs (with a giant
caveat!)

Don’t forget the role of software/compiler on performance

Intel i7

Source
(Bryant & O’Hallaron)

https://csapp.cs.cmu.edu/3e/figures.html

Cache coherence problem

Core A $ Core B $

Memory x = 0

x = 0 x = 0x = 1

x = 1

Definitions
Intuitively: want any read of an item to return most recently written value
to item

Coherence – what values can be returned by a read?

1. On a uniprocessor: reads after writes return written value
2. On a multiprocessor: reads by B after writes by A return written value

when given sufficient time
3. Two writes to same location by one processor are seen in the same

order by all processors

Snooping🔎

$A $B

BUS

x = 0 x = 0

1. A reads x
2. B reads x

Snooping🔎

$A $B

BUS

x = 1 x = 0

invalidate x!

3. A writes x

Snooping🔎

$A $B

BUS

x = 1 x = 1

4. B reads x

Cache needs to keep state for each block based on bus
messages (common protocol: MSI)

https://en.wikipedia.org/wiki/MSI_protocol

What should happen here?

$A $B

BUS

x = 0 x = 0

I want to
write 1 to x

I want to
write 2 to x

? ? ?
What effects does block size have on

coherence protocols?

