“SPEED UP VIRTUAL MEMORY
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How does the hardware use/manage the page
table? How does the OS?
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CSRs: control status registers

RISCV has a “privileged architecture” that supports OS operations (access
control, paging, special control registers)

CSRs track what the CPU is doing in each mode - helpful when switching
between user mode and supervisor mode

4.1.1 Supervisor Status Register (sstatus)

The sstatus register is an SXLEN-bit read /write register formatted as shown in Figure 4.1 when
SXLEN=32 and Figure 4.2 when SXLEN=64. The sstatus register keeps track of the processor’s
current operating state.
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Figure 4.1: Supervisor-mode status register (sstatus) when SXLEN=32.


https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
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Address translation in RISC-V

4.1.11 Supervisor Address Translation and Protection (satp) Register

The satp register is an SXLEN-bit read/write register, formatted as shown in Figure 4.14 for
SXLEN=32 and Figure 4.15 for SXLEN=64, which controls supervisor-mode address translation
and protection. This register holds the physical page number (PPN) of the root page table, i.e., its
supervisor physical address divided by 4 KiB; an address space identifier (ASID), which facilitates
address-translation fences on a per-address-space basis; and the MODE field, which selects the
current address-translation scheme. Further details on the access to this register are described in
Section 3.1.6.5.
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Figure 4.14: Supervisor address translation and protection register satp when SXLEN=32.

SXLEN=32
Value | Name | Description
0 Bare | No translation or protection.
1 Sv32 | Page-based 32-bit virtual addressing (see Section 4.3).
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What should happen if our virtual address
space is so big that the page table can't
efficiently fit in main memory?
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FIGURE 5.29 RISC-V uses four levels of tables to translate a 48-bit virtual address into a 40-bit physical address.
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Virtual memoxry in RISC-V 32bit

32 bit virtual address space (4kb pages) — 20 bit virtual page numbers (VPNs)
22-bit physical page number (PPN)
Page tables are the size of a page
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Figure 4.17: Sv32 physical address.
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Figure 4.18: Sv32 page table entry.



Virtual memoxry in RISC-V 64bit
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Figure 4.21: Sv39 page table entry.
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Figure 4.24: Sv48 page table entry.




In earlier lectures, we said memory is really
slow, which means that virtual memory makes
memory accesses really really slow (looking
up translation in page table + then doing
access). What can be done?
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TLBs: a cache for the page table

For those counting: we have

LT I-cache

L1 D-cache

L2 cache

L3 cache

Main memory acting as a cache

for disk

e TLBs acting as a cache for page
tables (translation of virtual to
physical addresses)

e ??? probably other caches in the

future




TLBs:
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For an instruction like 1w 10 0(sp), which do
we do first?
e Check Ll cache
e Check main memory
e Check TLB
e Check page table



Interaction of TLB and cache (PIPT)

PIPT (explained on next slide) is physical cache (need -
to know physical address before indexing into cache)
P&H fig. 5.33

Page
EM Possible? If so, under what circumstance?

Miss | Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit | TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.

Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
Hit | Miss Miss | Impossible: cannot have a translation in TLB if page is not present in memory.
Hit | Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss | Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.
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VIPT caches

PIPT (physically indexed, physically tagged) caches come at page
translation cost

VIVT (virtually indexed, virtually tagged) caches cause aliasing issues
(two virtual addresses mapping to same physical address)

VIPT: perform cache lookup + TLB lookup in parallel
both virtual and physical address have the same page offset

cache size now limited to page size

virtual memory virtual page # page offset



Hit
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What options do we have when designing a
memory hierarchy?



N
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replacement
policy

behavior on write
(through/back;

allocate; buffers) how to find a

block



Desigh tradeoffs

We designed single-stage CPU for correctness
We designed pipelined CPUs for performance (w/ some complexity tradeoffs)
With memory hierarchy, we encountered the space of performance tradeoffs

Sometimes the answer is to compromise (multiple cache levels; n-way
associativity)

Sometimes the answer is to innovate (TLBs, write buffers, VIPT)
Throwing hardware at the problem has limits and costs ($$, energy, area)
Real world complicates things a lot

Using advanced tools like gem5 helps us navigate tradeoffs (with a giant
caveat!)



