
TLBs

? ? ?
How does the hardware use/manage the page

table? How does the OS?

CSRs: control status registers
RISCV has a “privileged architecture” that supports OS operations (access
control, paging, special control registers)

CSRs track what the CPU is doing in each mode - helpful when switching
between user mode and supervisor mode

RISC-V
spec vol. 2

https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link

Address translation in RISC-V

? ? ?
What should happen if our virtual address
space is so big that the page table can’t

efficiently fit in main memory?

Multi-level page table

Virtual memory in RISC-V 32bit
32 bit virtual address space (4kb pages) → 20 bit virtual page numbers (VPNs)

22-bit physical page number (PPN)

Page tables are the size of a page

Virtual memory in RISC-V 64bit

? ? ?
In earlier lectures, we said memory is really

slow, which means that virtual memory makes
memory accesses really really slow (looking

up translation in page table + then doing
access). What can be done?

For those counting: we have

● L1 I-cache
● L1 D-cache
● L2 cache
● L3 cache
● Main memory acting as a cache

for disk
● TLBs acting as a cache for page

tables (translation of virtual to
physical addresses)

● ??? probably other caches in the
future

TLBs: a cache for the page table

TLBs: does this clear it up?

P&H fig. 5.30

? ? ?
For an instruction like lw 10 0(sp), which do

we do first?
● Check L1 cache

● Check main memory
● Check TLB

● Check page table

Interaction of TLB and cache (PIPT)

P&H fig. 5.33

PIPT (explained on next slide) is physical cache (need
to know physical address before indexing into cache)

VIPT caches
PIPT (physically indexed, physically tagged) caches come at page
translation cost

VIVT (virtually indexed, virtually tagged) caches cause aliasing issues
(two virtual addresses mapping to same physical address)

VIPT: perform cache lookup + TLB lookup in parallel

both virtual and physical address have the same page offset

cache size now limited to page size

virtual memory

cache

virtual page # page offset

tag index offset

? ? ?
What options do we have when designing a

memory hierarchy?

of levels in
hierarchy block size

associativity

cache size

replacement
policy

behavior on write
(through/back;

allocate; buffers) how to find a
block

data,
instruction, or

unified

Design tradeoffs
We designed single-stage CPU for correctness

We designed pipelined CPUs for performance (w/ some complexity tradeoffs)

With memory hierarchy, we encountered the space of performance tradeoffs

Sometimes the answer is to compromise (multiple cache levels; n-way
associativity)

Sometimes the answer is to innovate (TLBs, write buffers, VIPT)

Throwing hardware at the problem has limits and costs ($$, energy, area)

Real world complicates things a lot

Using advanced tools like gem5 helps us navigate tradeoffs (with a giant
caveat!)

