oooooo

e O e e & e

®

What causes cache misses? 3 Cs

Compulsory - bringing the first blocks into a cache (“warming up” the
cache)

Capacity — cache not big enough to contain all of the blocks it needs

Conflict — blocks constantly evicted due to cache collisions

Can we decrease compulsory misses?

Increasing block size has limited effects

10%

Miss

5%
rate

0%

e N N R)

/

\ e B 16K

|

. = = 2 256K
16 32 64 128 256

Block si
OCK 828 P&H fig. 5.11

Fully associative cache

Set-associative caches

P&H fig. 5.15

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

One-way set associative
(direct mapped)
Block Tag Data

0

N O g A~ 0N =

Set

0
1

Two-way set associative

Set Tag Data Tag Data

0
1
2
3

Four-way set associative

Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

|

|

|

|

|

L 1 [|

|

O)

Physical memoxry
The memory physically available
on a computer

Models how we’ve thought about
memory so far

Allows random access to bytes
using addresses

image source

https://pxhere.com/en/photo/1146597

What limitations does physical memory put on
our systems/software?

Virtual memory

A way of using main memory as a “cache” for disk storage
Exists in modern OS (managed by SW/HW together)
Advantages:

e Allows coordination of memory between processes (less complexity
from process POV)
e Allows process to see larger address space than fits in main memory

Complexities:

e Managing the mapping of physical to virtual memory
e Slow speed of disk

P&H Fig. 5.25

Virtual addresses Physical addresses
Each process -_

h it Address translation
can nave Its

own view of %%4
virtual il

addresses L W
(0-N)

Disk addresses

S

-})\) —

What determines how many physical pages
our system has? How many virtual pages?

Avoiding page faults

A virtual memory “miss” is called a page fault
Since disk is even slower (100k* slowdown) than main memory, we want:

e Fairly large page sizes
e Fully associative placement of pages in memory (virtual page can
map to any physical page)

Does it make sense for virtual memory
systems to use write-through or write-back?

If virtual addresses can map to any physical
address, how do we efficiently find a physical

page?

Page tables

Live in main memory
(separate from pages
themselves)

One for each process

Map virtual addresses to
physical addresses (not a
cache — why?)

Page faults managed by
OS (why?)

Virtual page
number

[1]

Page table
Physical page or

Valid disk address

i

i

;

Physical memory

N I | Y B (=) Y N o) [y [y sy pary

P&H fig. 5.28

Wi

Disk storage

How does the hardware use/manage the page
table? How does the OS?

What should happen if our virtual address
space is so big that the page table can't
efficiently fit in main memory?

Multi-level page table

Level 1 table

Table desc

T

VA[29:21]

Level 2 table

T

VA[20:12]

Level 3 table
4 KiB
Table desc = memory
page

Table desc

Level O table T
VA[38:30]

Table desc >

T

VA[47:39]

| SPTBR } 'L >

>
L4

.
L4

FIGURE 5.29 RISC-V uses four levels of tables to translate a 48-bit virtual address into a 40-bit physical address.

\\)\ ®

Address translation in RISC-V

4.1.11 Supervisor Address Translation and Protection (satp) Register

The satp register is an SXLEN-bit read/write register, formatted as shown in Figure 4.14 for
SXLEN=32 and Figure 4.15 for SXLEN=64, which controls supervisor-mode address translation
and protection. This register holds the physical page number (PPN) of the root page table, i.e., its
supervisor physical address divided by 4 KiB; an address space identifier (ASID), which facilitates
address-translation fences on a per-address-space basis; and the MODE field, which selects the
current address-translation scheme. Further details on the access to this register are described in
RISC-V Sidaastih
Section 3.1.6.5.

spec vol. 2
) 31 30 22 21 0
| MODE (WARL) | ASID (WARL) | PPN (WARL) |
1 9 22
Figure 4.14: Supervisor address translation and protection register satp when SXLEN=32.
SXLEN=32
Value | Name | Description
0 Bare | No translation or protection.
\\ 1 Sv32 | Page-based 32-bit virtual addressing (see Section 4.3).

&/

https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link

®

Virtual memoxry in RISC-V 32bit

32 bit virtual address space (4kb pages) — 20 bit virtual page numbers (VPNs)

22-bit physical page number (PPN)

Page tables are the size of a page

33 22 21 12 11

0

PPN([1] | PPNI0] I page offset

12 10 12
Figure 4.17: Sv32 physical address.

31 20 19 10 9 8 § 5 4 3

o

X | W | R || Meaning

0 | 0 | O | Pointer to next level of page table.
0| O | 1 || Read-only page.

0| 1 | O |l Reserved for future use.

0| 1 | 1 || Read-write page.

1| 0 | 0 || Execute-only page.

1| 0 | 1 || Read-execute page.

1| 1 | 0 || Reserved for future use.

1 1 || Read-write-execute page.

PPN([1] [PPN|0] | RSW [D | !
: 1

[GIU[X]|W]|R[V]
1 1 1

12 10 2

[

1

Figure 4.18: Sv32 page table entry.

Virtual memoxry in RISC-V 64bit

63 62 6160 54 53 28 27 19 18 10 9 ¥ 3 ©® 8 @ 8 2 % @
[N | PBMT | Reserved | PPN2] | PPN[]] | PPNjO] | RSW |D]|A|G|U|X|W]|R]|V |
1 2 7 26 9 9 2 1 1 1 1 1 1 1 1
Figure 4.21: Sv39 page table entry.

63 62 6160 54 53 37 36 2827 1918 10 9 8§ ¥ .8 § 4 8 B 1 W

[N | PBMT | Reserved | PPN[3] | PPN[2] | PPN[1] | PPN[0] | RSW |[D[A[G[U[X[W[R[V]

1

2 / 17 9 9 9 2 1 1 1 | O | 1 I 3

Figure 4.24: Sv48 page table entry.

