
Cache performance 
and associativity



Write through vs write back
Write through: every time data is changed in cache, change is done to 
lower level in hierarchy

Pro: Data are kept consistent (and don’t have to write on evict)

Con: Seems slower (potentially lots of writes to main mem)

Write back: changes to lower level in hierarchy are only done when data is 
evicted from cache

Pro: Potentially fewer writes to main memory

Con: Consistency/complexity issues



Cache 
controller

P&H fig. 5.10



? ? ?
What happens to the pipeline when a cache 

miss occurs?



A way to hide the cost of writing to lower level of hierarchy

Example: instruction sw t1, 4(a0)in write-through cache

1. Write to cache and write to write buffer happen immediately 
(simultaneously, 1 cycle)

2. Rest of execution can happen at the same time that write to main 
memory is happening from buffer

Write buffers



? ? ?
What happens if data that has been evicted 
from the cache is waiting in the write buffer 

and a read instruction for that address 
executes?



? ? ?
How many physical bits of space do we need 

to store our 1KB cache?



? ? ?
How do we measure the performance of a 

processor that uses caching?



Formulas from P&H 4.3



Effect of algorithm on CPU time

P&H fig. 5.19



Increasing block size has limited effects

P&H fig. 5.11



Set-associative caches

P&H fig. 5.15


