
Cache 
controllers



Mem. hierarchy review
Regs

L1 cache 
(SRAM*)

L2 cache (SRAM*)

L3 cache (SRAM*)

Main memory

SSD/HDD

Bi
gg

er
, c

he
ap

er

Fa
st

er
, c

lo
se

r t
o 

C
PU

Each level stores (caches) a subset of the one 
below it, for faster access of specific data

P&H 5.2



? ? ?
What questions do we need to ask when designing a 

cache?
● How do we decide what goes where in a cache?

● What control information do we need to keep track 
of in order to implement our cache?

● How do we decide what data to evict?
● What is our scheme of maintaining consistent data?
● How do we build an efficient memory hierarchy? 

(What is “efficient”)



For now: assume 1 word (4 byte) block size (reminder: minimum unit of 
information transferred between levels of memory hierarchy)

Assume one cache that holds 256 (28) blocks (1KB)

How do we decide what goes where?

Assume register a0 holds the value 0x20000004

lb t0, 1(a0)

lw t1, 4(a0)
Block address – the address of the block of 

memory we care about
Why do we bring things in to cache before loading 

them into a register?
Where in the cache do these blocks go?



What control information do we need?

Assume register a0 holds the value 0x20000004

lb t0, 1(a0)

lw t1, 4(a0)

lhu t2, 2(a0)
How do we tell that the block with the data we 

need already exists in the cache?



How do we decide what data to evict?

Address maps to a cache block already in use: 
how do we know that it’s already in use?

Assume register a0 holds the value 0x20000004

lb t0, 1(a0)

lw t1, 4(a0)

lhu t2, 2(a0)

lw t0, 1024(a0)



Block: minimum unit of information that can be present/not present in a cache

Valid bit: indicates whether data has been pulled in to that block of the cache

Tag: the upper bits of an address, used to uniquely identify which data is in the 
cache

Terminology



What is our scheme of maintaining consistent data?

What happens when data that exists in the cache 
is modified?
What happens when data that does not yet exist 
in the cache is modified?

Assume register a0 holds the value 0x20000004

lb t0, 1(a0)

lw t1, 4(a0)

lhu t2, 2(a0)

lw t0, 1024(a0)

addi t1, t1, 1

sw t1, 4(a0)

sh t1, 8(a0)



Write through vs write back
Write through: every time data is changed in cache, change is done to 
lower level in hierarchy

Pro:

Con:

Write back: changes to lower level in hierarchy are only done when data is 
evicted from cache

Pro:

Con:


