
Cache 
controllers; 
metrics



Mem. hierarchy review
Regs

L1 cache 
(SRAM*)

L2 cache (SRAM*)

L3 cache (SRAM*)

Main memory

SSD/HDD

Bi
gg

er
, c

he
ap

er

Fa
st

er
, c

lo
se

r t
o 

C
PU

Each level stores (caches) a subset of the one 
below it, for faster access of specific data

P&H 5.2



? ? ?
What questions do we need to ask when designing a 

cache?
● How do we decide what goes where in a cache?
● What control information do we need to keep 

around in order to implement our cache?
● How do we decide what data to evict?

● What is our scheme of maintaining consistent data?
● How do we build an efficient memory hierarchy? 

(What is “efficient”)



Assume address 0x20000004 is in register a0

lw t0, 0(a0)

lw t1, 4(a0)

lhu t2, 2(a0)

lw t0, 1024(a0)

addi t1, t1, 1

sw t1, 4(a0)

sw t1, 8(a0)

The code



Block: minimum unit of information that can be present/not present in a cache

Valid bit: indicates whether data has been pulled in to that block of the cache

Tag: the upper bits of an address, used to uniquely identify which data is in the 
cache

Terminology



For now: assume 1 word (4 byte) block size

Assume one cache that holds 256 (28) blocks (1KB)

How do we decide what goes where?

Assume address 0x20000004 is in register a0

lw t0, 0(a0)

lw t1, 4(a0) Block address – the address of the block of 
memory we care about

Why do we bring things in to cache before loading 
them into a register?

Where in the cache do these blocks go?



What control information do we need?

Assume address 0x20000004 is in register a0

lw t0, 0(a0)

lw t1, 4(a0)

lhu t2, 2(a0)
How do we tell that the block with the data we 

need already exists in the cache?



How do we decide what data to evict?

Assume address 0x20000004 is in register a0

lw t0, 0(a0)

lw t1, 4(a0)

lhu t2, 2(a0)

lw t0, 1024(a0) Address maps to a cache block already in use: 
how do we know that it’s already in use?



What is our scheme of maintaining consistent data?

Assume address 0x20000004 is in register a0

lw t0, 0(a0)

lw t1, 4(a0)

lhu t2, 2(a0)

lw t0, 1024(a0)

addi t1, t1, 1

sw t1, 4(a0)

sw t1, 8(a0)

What happens when data that exists in the cache 
is modified?
What happens when data that does not exist in 
the cache is modified?





Write through vs write back
Write through: every time data is changed in cache, change is done to 
lower level in hierarchy

Pro: Data are kept consistent (and don’t have to write on evict)

Con: Seems slower

Write back: changes to lower level in hierarchy are only done when data is 
evicted from cache

Pro: Fewer writes to main memory

Con: Consistency/control issues


