
Memory hierarchy

Recap thus far
Architecture studies HW/SW interface (“how a computer works”)

ISAs: interface between high-level languages and hardware

Microarchitectures: implementation of ISAs

Focused mostly on correctness, started talking about speed/throughput
and vaguely power

We’ve built two CPUs (and two-ish more in HW2), which can execute
programs from memory…

…assuming the program exists in memory and memory works!

What do we know (so far) about memory?

Persistent storage

Flash-based
TBs of capacity
<$100/TB
10s of GB/s read
speed (10s of us
access time)
~10 yrs lifetime

Magnet-based
10s of TBs of capacity
<$15/TB
100s of MB/s read
speed (ms access
time)
100s yrs lifetime

SSD (Solid
State Disk)

HDD (Hard Disk
Drive)

By Evan-Amos -
Own work, CC
BY-SA 3.0 (link)

By Jacek Halicki -
Own work, CC BY-SA
4.0 (link)

Slower
Bigger

Cheaper

Faster
Smaller
Pricier

this is secondary storage (CPU needs I/O bus to access);
NOT memory

https://commons.wikimedia.org/w/index.php?curid=27940250
https://commons.wikimedia.org/w/index.php?curid=133700064

Main memory
Primary storage – holds instructions + data while program is running

Volatile (does not persist when power is turned off)

DRAM (dynamic random access memory) technology

10s of GBs of capacity

$5-$10/GB

60 ns access time

This is still really slow
compared with modern
processor clock speeds

Processor-memory performance gap

Computer Architecture: A Quantitative Approach, John L Hennessy and David A Patterson

“Static Random Access Memory”

Less dense than DRAM (more $$$/area) but faster

1-100s of MB of capacity

0.5-10s of ns access time

SRAM

not practical for main memory, but want to take advantage of
speed

What do do?

Memory hierarchy

Regs

L1 cache
(SRAM*)

L2 cache (SRAM*)

L3 cache (SRAM*)

Main memory (DRAM)

SSD/HDD

Bi
gg

er
, c

he
ap

er

Fa
st

er
, c

lo
se

r t
o

C
PU

Each level stores
(caches) a subset of
the one below it, for

faster access of
specific data

? ? ?
L1-L3 caches use the same technology (SRAM).

Why do they have different access speeds?

Modern CPU layouts

image source

https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer

A slightly more detailed picture

Modern CPU specs
AMD Ryzen 5 7600 Apple M3 Intel Core Ultra 7

265K
Qualcomm
Snapdragon
X1E-84-100

L1 cache 64 KB / core 192 KB / core*
I-cache, 128 KB /
core* D-cache

192 KB / core
(market an “L0” 48 KB
D- and 64 KB I-cache)

288 KB / core

L2 cache 1 MB / core 16-64 MB / core* 3 MB / core 12 MB / “module” (4
cores)

L3 cache 32 MB 8-96MB* (M2
numbers)

30 MB 6 MB

https://www.techpowerup.com/cpu-specs/ryzen-5-7600.c2959
https://en.wikipedia.org/wiki/Apple_M3
https://www.techpowerup.com/cpu-specs/core-ultra-7-265k.c3776
https://www.techpowerup.com/cpu-specs/core-ultra-7-265k.c3776
https://www.techpowerup.com/cpu-specs/snapdragon-x1e-84-100.c4103
https://www.techpowerup.com/cpu-specs/snapdragon-x1e-84-100.c4103
https://www.techpowerup.com/cpu-specs/snapdragon-x1e-84-100.c4103
https://en.wikipedia.org/wiki/Apple_M2

Blocks
Block (or line) - minimum unit of
information that can be present/not
present in a cache

Blocks are transferred between levels in
the memory hierarchy

Modern CPUs: often 64 bytes (128 for
Apple Silicon)

P&H 5.2

Observations about the ways programs access data

Temporal locality: if data is referenced, it will tend to be referenced again
soon

Spatial locality: if data is referenced, data whose addresses are close by
will tend to be referenced soon

Principle of locality

Is a for-loop that iterates through an
array once an example of spatial or

temporal locality?

? ? ?
In the context of caching, why is spatial locality

useful? Why is temporal locality useful?

? ? ?
What questions do we need to ask when designing a

cache?

