
Memory hierarchy

Recap thus far
Architecture studies HW/SW interface (“how a computer works”)

ISAs: interface between high-level languages and hardware

Microarchitectures: implementation of ISAs

Focused mostly on correctness, started talking about speed/throughput
and vaguely power

We’ve built two CPUs (and two more in HW2), which can execute
programs from memory…

…assuming the program exists in memory and memory works!

What do we know (so far) about memory?

There’s some way that data persists on a computer
Data being accessed by addresses

RISC-V: byte-addressing (each byte in memory has a unique
address)

Endianness allows us to interpret data that is larger than one byte in
memory
Memory is way slower than registers
There is some sort of hardware that “takes care of” memory accesses for
us

Persistent storage

Flash-based
TBs of capacity
<$100/TB
10s of GB/s read
speed (10s of us
access time)
~10 yrs lifetime

Magnet-based
10s of TBs of capacity
<$15/TB
100s of MB/s read
speed (ms access
time)
100s yrs lifetime

SSD (Solid
State Disk)

HDD (Hard Disk
Drive)

By Evan-Amos - Own
work, CC BY-SA 3.0 (link)

By Jacek Halicki - Own
work, CC BY-SA 4.0 (link)

Cheaper
Slower
Bigger

Pricier
Faster

Smaller

https://commons.wikimedia.org/w/index.php?curid=27940250
https://commons.wikimedia.org/w/index.php?curid=133700064

Main memory
Persistent storage is secondary (CPU uses I/O buses to access)

Main memory is primary

Holds instructions + data while program is running

Volatile (does not persist when power is turned off)

DRAM (dynamic random access memory) technology

10s of GBs of capacity

$5-$10/GB

60 ns access time

This is still really slow
compared with modern
processor clock speeds

Processor-memory performance gap

Computer Architecture: A Quantitative Approach, John L Hennessy and David A Patterson

add more
cores (CPUs

per chip)

???

“Static Random Access Memory”

Less dense than DRAM (more $$$/area) but faster

1-100s of MB of capacity

0.5-10s of ns access time

Not practical to use for main memory, but want to take advantage of
speed – what to do? Caching

SRAM

Memory hierarchy

Regs

L1 cache
(SRAM*)

L2 cache (SRAM*)

L3 cache (SRAM*)

Main memory

SSD/HDD

Bi
gg

er
, c

he
ap

er

Fa
st

er
, c

lo
se

r t
o

C
PU

Each level stores
(caches) a subset of
the one below it, for

faster access of
specific data

? ? ?
L1-L3 caches use the same technology (SRAM).

Why do they have different access speeds?

Modern CPU layouts

image source

https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer

Modern CPU specs
AMD Ryzen 7 7800X3D Apple M1 Intel Core i5-13600K

L1 cache 64 KB / core 192 KB / core* I-cache,
128 KB / core* D-cache

80 KB / core

L2 cache 1 MB / core 12 MB / core* 2 MB / core

L3 cache 96 MB 8MB* 24 MB

https://www.amd.com/en/products/apu/amd-ryzen-7-7800x3d
https://en.wikipedia.org/wiki/Apple_M1
https://www.techpowerup.com/cpu-specs/core-i5-13600k.c2829

Blocks
Block (or line) - minimum unit of
information that can be present/not
present in a cache

Blocks are transferred between levels in
the memory hierarchy

Modern CPUs: often 64 bytes (128 for M1)

P&H 5.2

Fundamental challenge of caching:
smaller cache needs to be able to
bring in, keep, and evict any data

from larger cache

Observations about the ways programs access data

Temporal locality: if data is referenced, it will tend to be referenced again
soon

Spatial locality: if data is referenced, data whose addresses are close by
will tend to be referenced soon

Principle of locality

Is a for-loop that iterates through an
array once an example of spatial or

temporal locality?

? ? ?
In the context of caching, why is spatial locality

useful? Why is temporal locality useful?

Spatial: Pulling in subsequent memory locations into the cache

Temporal: Keeping stuff around in cache after it’s been used (LRU
eviction)

? ? ?
What questions do we need to ask when designing a

cache?
● How do we decide what goes where in a cache?

● What is our scheme of maintaining consistent data?
● How do we decide what data to evict?

● How do we build an efficient memory hierarchy?
(What is “efficient”)

● What control information do we need to keep
around in order to implement our cache?

