
Hardware overview
HW1 will keep coming out



HW0 responses
Excited about: a lot!

Nervous about: hardware, assembly, course structure, novelty of topics

Helps your learning: in-class activities, diagrams, low-stakes activities

Community: committed to 
welcoming environment + sustained 
communication! We want to focus 
on everyone’s success and growth



? ? ?
source // another visualization // Babbage’s analytical engine

http://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=K6NgMNvK52A
https://www.youtube.com/watch?v=5rtKoKFGFSM


Interpret an instruction (bits in memory/signals on wires) as an action it 
should take

What does that look like in hardware?

Goal of a CPU



CPU can read bits from memory as electrical signals (one “wire” per bit)

Everything is a pure low/high signal, no noise/interference

For now, we’re not worried about constraints (space, complexity, power)

Each “step” leaves enough time for circuit to stabilize

HW assumptions we’re working with



A way to extract/rearrange bits - pull out the relevant fields of an 
instruction

A way to implement combinational logic – arithmetic/logical, comparison

A way to keep track of state - what is the value of the PC at the current 
step?

To run a program, CPU HW needs:



Data as collections of wires
wire/data line: carries a single digital signal (on/off)

bus (P&H definition): a collection of data lines that is treated as one, 
multi-bit signal



Examples: adders, logical operators, control signal translation

Work like pure functions (no memory)

Combinatorial expressions can be automatically synthesized to circuits

Physically, logic gates are implemented using transistors (electrical switches)

Combinational logic circuits

image source
image source

“half adder” (sum and carry output):

https://www.autodesk.com/products/fusion-360/blog/you-shall-not-pass-how-logic-gates-work-in-digital-electronics/
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/trangate.html#c2


Used to select between multiple inputs

n-bit selector signal = select between 2n inputs

Example: 2nd operand for add vs addi

Multiplexers

By en:User:Cburnett - This W3C-unspecified vector image 
was created with Inkscape ., CC BY-SA 3.0, link

P&H Fig. A.3.2

https://commons.wikimedia.org/w/index.php?curid=1505575


? ? ?
Build a 4-input (2-bit selector) mux out of 

logic gates

b0
b1
b2
b3

z

s1 s0





“ALU”

Takes in two operands and a control signal for the operation, produces 
result of applying operation on operands (status input/output signals 
optional)

Arithmetic Logic Unit

By Lambtron - Own work, CC BY-SA 4.0, link source

https://commons.wikimedia.org/w/index.php?curid=36975996
https://en.wikipedia.org/wiki/Arithmetic_logic_unit#/media/File:74181aluschematic.png


In a circuit, many things happen in parallel

Synchronization signal (wire) that allows necessary components to know 
when to move on to the next “step”

Clock cycle time is long enough to allow for signals to stabilize

i.e. allow electrons to travel through the longest possible path of 
wires/transistors

Clocks





How do we express “at each step, increment the PC by 4?”

Memory elements, such as flip flops and latches, have 
internal state that updates on clock tick (D flip-flop 
pictured)

Our abstraction of registers: each bit is stored in a D flip-flop

Components that have state
D Q

Q



? ? ?
How do we express “at each clock tick, 

increment the PC by 4” using a PC register and 
an adder?



Bits of an instruction = electrical signals CPU uses to execute a program

CPU is just a (very, very) big circuit made up of wires, combinational logic 
elements, and memory elements

Can implement modules we need (multiplexers, ALUs, bit selectors, 
registers) using these elements

Basically: we have an “existence proof” of the hardware we need, so we 
can start working one level of abstraction higher to implement a CPU

Takeaways



Hardware description languages
Used to describe circuits (often for synthesis into a circuit, such as on an FPGA)

Examples: Verilog, VHDL

Defines behavior of combinational components and memory components

Updates in a block are done in parallel – Verilog example:

reg a, r;
always @(posedge clk) begin

r <= r + 1;
a <= ~r;

end

We won’t be working in HDL – but a C++ approximation of it in simulation



What do we need to get started?

Let’s build a CPU!


