
Hardware overview
HW1 will keep coming out
TA hours are on website
Moving my hours to Fridays at 11 (next week)



HW0 responses
Excited about: a lot!

Nervous about: low-level details, new course/workload, heard scary things 
about the topic, using the simulators

Helps your learning: in-class activities, having access to resources

Community: committed to 
welcoming environment + sustained 
communication! We want to focus 
on everyone’s success and growth



? ? ?
source // another visualization // Babbage’s analytical engine

http://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=K6NgMNvK52A
https://www.youtube.com/watch?v=5rtKoKFGFSM


Modern computers hinge on two principles:

● Instructions are represented in memory the same way as numbers
● Memory can be altered by programs

First principle means that:

● Instructions live in memory
● The CPU needs to have a way of interpreting an instruction, just as it 

would any other data in memory

Stored-program computers



CPU can read bits from memory as electrical signals (one “wire” per bit)

Everything is a pure low/high signal, no noise/interference

For now, we’re not worried about constraints (space, complexity, power)

Each “step” leaves enough time for circuit to stabilize

HW assumptions we’re working with



A way to extract/rearrange bits - pull out the relevant fields of an 
instruction

A way to implement combinational logic – arithmetic/logical, branching

A way to keep track of state - what is the value of the PC at the current 
step?

To run a program, CPU HW needs:



Data as collections of wires
wire/data line: carries a single digital signal (on/off)

bus (P&H definition): a collection of data lines that is treated as one, 
multi-bit signal



Examples: adders, logical operators, control signal translation

Work like pure functions (no memory)

Combinatorial expressions can be automatically synthesized to circuits

Physically, logic gates are implemented using transistors (electrical switches)

Combinational logic circuits

image source
image source

“half adder” (sum and carry output):

https://www.autodesk.com/products/fusion-360/blog/you-shall-not-pass-how-logic-gates-work-in-digital-electronics/
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/trangate.html#c2


Used to select between multiple inputs

n-bit selector signal = select between 2n inputs

Example: 2nd operand for add vs addi

Multiplexers

By en:User:Cburnett - This W3C-unspecified vector image 
was created with Inkscape ., CC BY-SA 3.0, link

P&H Fig. A.3.2

https://commons.wikimedia.org/w/index.php?curid=1505575


? ? ?
Build a 4-input (2-bit selector) mux out of 

logic gates

b0
b1
b2
b3

z

s1 s0





“ALU”

Takes in two operands and a control signal for the operation, produces 
result of applying operation on operands (status input/output signals 
optional)

Arithmetic Logic Unit

By Lambtron - Own work, CC BY-SA 4.0, link source

https://commons.wikimedia.org/w/index.php?curid=36975996
https://en.wikipedia.org/wiki/Arithmetic_logic_unit#/media/File:74181aluschematic.png


How do we express “at each step, increment the PC by 4?”

Need clock signal to control when state changes

Memory elements, such as flip flops and latches, have internal state that 
updates on clock tick (D flip-flop pictured)

Our abstraction of registers: each bit is stored in a D flip-flop

Components that have state
D Q

Q



? ? ?
How do we express “at each clock tick, 

increment the PC by 4” using a PC register and 
an adder?



Bits of an instruction = electrical signals CPU uses to execute a program

CPU is just a (very, very) big circuit made up of wires, combinational logic 
elements, and memory elements

Can implement modules we need (multiplexers, ALUs, bit selectors, 
registers) using these elements

Basically: we have an “existence proof” of the hardware we need, so we 
can start working one level of abstraction higher to implement a CPU

Takeaways



Hardware description languages
Used to describe circuits (often for synthesis into a circuit, such as on an FPGA)

Examples: Verilog, VHDL

Defines behavior of combinational components and memory components

Updates in a block are done in parallel – Verilog example:

reg a, r;
always @(posedge clk) begin

a <= ~r;
r <= r + 1;

end

We won’t be working in HDL – but a C++ approximation of it in simulation



What do we need to get started?

Let’s build a CPU!


