
Hardware overview



Computations

Add two variables together, subtract a constant, perform bit 
operations…

Data transfer

Loads and stores from memory

Control logic

Conditional and unconditional jumps (support for if-statements, 
loops, function calls)

Three basic classes of instructions in most ISAs

Data needs to be 
easily accessible by 

the CPU in order to do 
this



Arithmetic and logical operations
RISC-V (32I base instruction set) offers the following: 

Arithmetic: ADD, SUB

Logical: AND, OR, XOR

Shift: SLL, SRL, SRA

Comparison: SLT[U]

Three operands: two source registers (rs1, rs2), one destination (rd)

sub x12, x11, x10 # x12 = x11 - x10

or x13, x13, x14 # x13 |= x14

slt x17, x15, x16 # x17 = x15 < x16 ? 1 : 0

No need for ADDU because 2s 
complement math “just works” (see 
textbook)
Compiler takes care of applying SRL to 
unsigned vars and SRA to signed



? ? ?
If an arithmetic/logical instruction has three 
operands, how do you add a constant to a 

register?



Immediates + instruction formats
Immediates: constants that are encoded as part of an instruction

Separate instructions from register-register (ADD vs ADDI)

In RISC-V, register-immediate instructions have rd, rs1, and 
immediate operand

register/register 

instrs

register/immediate instrs



addi x10, x10, 2 # x10 += 2

xori x12, x11, 0xff # x12 = x11 ^ 0xff

slli x14, x13, 16 # x14 = x13 << 16

Register-register and 
Register-immediate instrs

Arithmetic ADD, SUB ADDI

Logical AND, OR, XOR ANDI, ORI, XORI

Shift SLL, SRL, SRA SLLI, SRLI, SRAI

Comparison SLT[U] SLTI[U]

Why no SUBI?



only 12 bits of an I-type instruction are set aside for the immediate

value is sign-extended into 32 bits

need to pay attention to MSB (xori x10, x10, 0xfff will flip all bits, not just the last 12)

loading a large number into a register may take multiple instructions (hint: LUI)

Immediate encodings



? ? ?
source // another visualization // Babbage’s analytical engine

http://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=K6NgMNvK52A
https://www.youtube.com/watch?v=5rtKoKFGFSM


Interpret an instruction (bits in memory/signals on wires) as an action it 
should take

What does that look like in hardware?

Goal of a CPU



CPU can read bits from memory as electrical signals (one “wire” per bit)

Everything we read is a pure low/high signal, no noise/interference

Not worried about constraints (space, complexity, power) for now

Not assuming that signals stabilize instantaneously

HW assumptions we’re working with



A way to extract/rearrange bits - pull out the relevant fields of an 
instruction

A way to implement combinational logic – arithmetic/logical, comparison

A way to keep track of state - what is the value of the PC at the current 
step?

To run a program, CPU HW needs:



Data as collections of wires
wire/data line: carries a single digital signal (on/off)

bus (P&H definition): a collection of data lines that is treated as one, 
multi-bit signal



Examples: adders, logical operators, control signal translation

Work like pure functions (no memory)

Combinatorial expressions can be automatically synthesized to circuits

Physically, logic gates are implemented using transistors (electrical switches)

Combinational logic circuits

image source
image source

“half adder” (sum and carry output):

https://www.autodesk.com/products/fusion-360/blog/you-shall-not-pass-how-logic-gates-work-in-digital-electronics/
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/trangate.html#c2


Used to select between multiple inputs

n-bit selector signal = select between 2n inputs

Example: 2nd operand for add vs addi

Multiplexers

By en:User:Cburnett - This W3C-unspecified vector image 
was created with Inkscape ., CC BY-SA 3.0, link

P&H Fig. A.3.2

https://commons.wikimedia.org/w/index.php?curid=1505575


? ? ?
Build a 4-input (2-bit selector) mux out of 

logic gates

b0
b1
b2
b3

z

s1 s0





“ALU”

Takes in two operands and a control signal for the operation, produces 
result of applying operation on operands (status input/output signals 
optional)

Arithmetic Logic Unit

By Lambtron - Own work, CC BY-SA 4.0, link source

https://commons.wikimedia.org/w/index.php?curid=36975996
https://en.wikipedia.org/wiki/Arithmetic_logic_unit#/media/File:74181aluschematic.png


In a circuit, many things happen in parallel

Synchronization signal (wire) that allows necessary components to know 
when to move on to the next “step”

Clock cycle time is long enough to allow for signals to stabilize

i.e. allow electrons to travel through the longest possible path of 
wires/transistors

Clocks



How do we express “at each step, increment the PC by 4?”

Memory elements, such as flip flops and latches, have 
internal state that updates on clock tick (D flip-flop 
pictured)

Clocked register: a multi-bit memory element that updates 
on clock tick

Components that have state
D Q

Q



? ? ?
How do we express “at each clock tick, 
increment the PC by 4” using a clocked 

register (for the PC) and an adder?



Bits of an instruction = electrical signals CPU uses to execute a program

CPU is just a (very, very) big circuit made up of wires, combinational logic 
elements, and memory elements

Can implement modules we need (multiplexers, ALUs, bit selectors, 
registers) using these elements

Basically: we have an “existence proof” of the hardware we need, so we 
can start working one level of abstraction higher to implement a CPU

Takeaways



What do we need to get started?

Let’s build a CPU!


