Haxrdware overview

oooooo

e O e e & e

®

Three basic classes of instructions in most ISAs

Computations

Add two variables together, subtract a constant, perform bit

operations..
P Data needs to be
Data transfer easily accessible by
the CPU in order to do
Loads and stores from memory this

Control logic

Conditional and unconditional jumps (support for if-statements,
loops, function calls)

®

Arithmetic and logical operations

RISC-V (32l base instruction set) offers the following:

Arithmetic: ADD, SUB No need for ADDU because 2s

Logical: AND, OR, XOR complement math “just works” (see
' S textbook)
Shift: SLL, SRL, SRA Compiler takes care of applying SRL to

unsigned vars and SRA to signed
Comparison: SLT[U]

Three operands: two source registers (rs], rs2), one destination (rd)
sub x12, x11, # x12 = x11 - x10

or x13, x13, # x13 |= x14

slt x17, x15, I x17 x15 < x16 ? 1 : O

If an arithmetic/logical instruction has three
operands, how do you add a constant to a
register?

®

Immediates + instruction formats

Immediates: constants that are encoded as part of an instruction
Separate instructions from register-register (ADD vs ADDI)

In RISC-V, register-immediate instructions have rd, rsl, and
immediate operand

: ister
31 25 24 20 19 15 14 12 11 76 0 reg\S’C?TI resg
funct? | rs2 | sl | funct3 | rd | opcode | R-type instr
imm(11:0 rsl funct3 rd opcode I-type s
imm[11:5] | 2 | sl | funct3 | imm[4:0] | opcode | S-type inStr:‘)ediOte

imm|31:12] | rd | opcode |U-type

Register-register and
Register-immediate instrs Why no SUBI?

Arithmetic ADD, SUB ADDI

Logical AND, OR, XOR ANDI, ORI, XORI
Shift SLL, SRL, SRA SLLI, SRLI, SRAI
Comparison SLT[U] SLTI[U]

addi x10, x10, # x10 += 2
xori x12, x11, # x12 = x11 N Oxff
slli x14, x13, # x14 = x13 << 16

Immediate encodings

31 30 20 19 12 11 10 5 4 1 0
| — inst[31] — | inst[30:25] | inst[24:21] | inst[20] | I-immediate
| — inst[31] — | inst[30:25] | inst[11:8] | inst[7] | S-immediate
| — inst[31] — | inst[7] [inst[30:25] | inst[11:8] [0 | B-immediate
[inst[31] | inst[30:20] [inst[19:12] | — 0 — | U-immediate
| — inst[31] — | inst[19:12] |inst[20] | inst[30:25] |inst[24:21]| O | J-immediate

only 12 bits of an I-type instruction are set aside for the immediate
value is sign-extended into 32 bits
need to pay attention to MSB (xori x10, x10, Oxfff will flip all bits, not just the last 12)

loading a large number into a register may take multiple instructions (hint: LUI)

source [/ another visualization // Babbage’s analytical engine

http://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=K6NgMNvK52A
https://www.youtube.com/watch?v=5rtKoKFGFSM

Goal of a

CPU

Interpret an instruction (bits in memory/signals on wires) as an action it

should take

What does that look like in hardware?
RV 321 Base Instruction Set

imm|31:12 rd 0110111

imm|31:12 rd 0010111
imm|20[10:1]11]19:12] rd 1101111

imm|11:0] rsl 000 rd 1100111
imm|[12]10:5] rs2 rsl 000 | imm[4:1[11] 1100011
imm|[12[10:5 rs2 sl 001 imm[4:1]11 1100011
imm|12[10:5 rs2 rsl 100 imm[4:1|11 1100011
imm|[12[10:5 rs2 rsl 101 imm[4:1|11 1100011
imm[12(10:5 rs2 rsl 110 imm(4:1|11 1100011
imm|12[10:5 rs2 rsl 111 imm(4:1[11 1100011
imm|11:0 rsl 000 rd 0000011
imm|[11:0 sl 001 rd 0000011
imm|11:0 rsl 010 rd 0000011
imm|11:0 rsl 100 rd 0000011
imm|[11:0 sl 101 rd 0000011

T P | 1 rat) raol non [Y | 100Nt 1

LUI
AUIPC
JAL
JALR
BEQ
BNE
BLT
BGE
BLTU
BGEU
LB

LH

LW
LBU

LHU
cR

®

HW assumptions we'’re working with

CPU can read bits from memory as electrical signals (one “wire” per bit)
Everything we read is a pure low/high signal, no noise/interference
Not worried about constraints (space, complexity, power) for now

Not assuming that signals stabilize instantaneously

®

To run a program, CPU HW needs:

A way to extract/rearrange bits - pull out the relevant fields of an
instruction

A way to implement combinational logic — arithmetic/logical, comparison

A way to keep track of state - what is the value of the PC at the current
step?

31 30 20 19 12 11 10 5 4 1 0
| — inst[31] — | inst[30:25] | inst[24:21] | inst[20] | I-immediate
| — inst[31] — | inst[30:25] | inst[11:8] | inst[7] | S-immediate
| — inst[31] — | inst[7] [inst[30:25] [inst[11:8] [0 | B-immediate
linst[31] [inst[30:20] | inst[19:12] | —f— | U-immediate

| — inst[31] — | inst[19:12] |inst[20] | inst[30:25] |inst[24:21]| O | J-immediate

®

Data as collections of wires

wire/data line: carries a single digital signal (on/off)

bus (P&H definition): a collection of data lines that is treated as one,
multi-bit signal

C;

Combinational logic circuits

Examples: adders, logical operators, control signal translation
Work like pure functions (no memory)
Combinatorial expressions can be automatically synthesized to circuits

Physically, logic gates are implemented using transistors (electrical switches)

+6V

LOGIC GATE SYMBOLS “half adder” (sum and earry output):

AND NAND OR NOR

Lt b e

XNOR

BUFFER .
image source

image source

https://www.autodesk.com/products/fusion-360/blog/you-shall-not-pass-how-logic-gates-work-in-digital-electronics/
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/trangate.html#c2

Multiplexezxs

Used to select between multiple inputs

n-bit selector signal = select between 2" inputs

Example: 2nd operand for add vs addi So
A—{0
M
A—0 u
X
Z B—{1
B—1
S
P&H Fig. A.3.2

By en:User.Cburnett - This W3C-unspecified vector image
was created with Inkscape ., CC BY-SA 3.0, link

https://commons.wikimedia.org/w/index.php?curid=1505575

?

?

P

Build a 4-input (2-bit selector) mux out of

b0 —
bl —
b2 —
b3 —

sl

sO

logic gates

LOGIC GATE SYMBOLS

DD DD

NAND

- D D D

BUFFER XNOR

Arithmetic Logic Unit

IIALUII

Takes in two operands and a control signal for the operation, produces
result of applying operation on operands (status input/output signals

optional)
Integer Integer
Operand Operand
A v B
Status
Opcode vy
Integer
Result

By Lambtron - Own work,.CC BY-SA 4.0, link

Status

[o™ M Ay Bo

A B

R B A B3

v

G%
-

PREY

W

ik

Fo F A=

source

.,_‘
w
ol
o
E
ES
o]

https://commons.wikimedia.org/w/index.php?curid=36975996
https://en.wikipedia.org/wiki/Arithmetic_logic_unit#/media/File:74181aluschematic.png

In a circuit, many things happen in parallel

Synchronization signal (wire) that allows necessary components to know
when to move on to the next “step”

Clock cycle time is long enough to allow for signals to stabilize

i.e. allow electrons to travel through the longest possible path of
wires/transistors

e [L[L L L1 L[LT 1

®

Components that have state

How do we express “at each step, increment the PC by 4?”

Memory elements, such as flip flops and latches, have
internal state that updates on clock tick (D flip-flop
pictured)

Clocked register: a multi-bit memory element that updates
on clock tick

How do we express “at each clock tick,
increment the PC by 4” using a clocked
register (for the PC) and an adder?

Takeaways

Bits of an instruction = electrical signals CPU uses to execute a program

CPU is just a (very, very) big circuit made up of wires, combinational logic
elements, and memory elements

Can implement modules we need (multiplexers, ALUs, bit selectors,
registers) using these elements

Basically: we have an “existence proof” of the hardware we need, so we
can start working one level of abstraction higher to implement a CPU

g

Let’s build a CPU!

What do we need to get started?

