
RISC-V Assembly
HW1b comes out today!

? ? ?
What sorts of operations do we want a

computer to be able to do?

addition, logical operations

branching (if-expressions/conditionally, unconditional jumps)

managing data (variables, r/w memory, constants)

i/o

Definitions (from P&H Chapter 2)
Instruction: a command computer hardware understands and obeys

Machine language: a binary representation of machine instructions

Assembly language: a symbolic representation of machine instructions

High-level language: a portable language such as C, C++, Java that is
composed of words and algebraic notation

Compiler

Assembler

x++;

addi a0, a0, 1

0x00150513

We’ll be using RISC-V in class and for the next few assignments

Stems from research out of Berkeley in the 80s

Completely open

RISC: reduced instruction set computer (contrast with CISC – C stands for
complex) makes it more straightforward for us to implement*

Extensions to support different types of computing (multiplication, floating
point, data-level parallelism, crypto, embedded…)

Real-world implementations exist (Google Titan M2)

Why RISC-V?

Important note: not all ISAs are like RISC-V. We’ll keep highlighting the
similarities/differences between ISAs throughout the course

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.pdf
https://www.androidauthority.com/titan-m2-google-3261547/

Computations

Add two variables together, subtract a constant, perform bit
operations…

Data transfer

Loads and stores from memory

Control logic

Conditional and unconditional jumps (support for if-statements,
loops, function calls)

Three basic classes of instructions in most ISAs

Data needs to be
easily accessible by

the CPU in order to do
this

Small, fast memory (usually the size of a word, or default data size of a specific
architecture)

Used by the CPU

Usually addressed separately from main memory

Some have special purposes, some are general purpose (GPR)

In RISC-V, all arithmetic and control computations are done on registers

To compute on memory, first need to load data from memory into register

Called a “register-register” or “load-store” architecture (other examples:
ARM, MIPS)

Contrast with “register-memory” architecture (example: x86)

Registers

RV32I: 31 GPRs (x1-x32) – conventions define the
role of some of these

x0 hard-wired to 0

pc (program counter) – holds address of current
instruction

RISC-V Specification

https://browncs1952y.github.io/assets/docs/riscv-spec-v2.2.pdf

? ? ?
ISA: model of the computations a CPU can do (interface for

programmer/compiler)
Microarchitecture: hardware implementation of ISA

(multiple microarchitectures possible for one ISA, e.g.
different Intel chips implementing Intel64)

If the ISA is about instructions and microarchitecture is
about hardware, why does the ISA spec define how many

registers are available?

Arithmetic and logical operations
RISC-V (32I base instruction set) offers the following:

Arithmetic: ADD, SUB

Logical: AND, OR, XOR

Shift: SLL, SRL, SRA

Comparison: SLT[U]

Three operands: two source registers (rs1, rs2), one destination (rd)

sub x12, x11, x10 # x12 = x11 - x10

or x13, x13, x14 # x13 |= x14

slt x17, x15, x16 # x17 = x15 < x16 ? 1 : 0

Reminder on signed vs. unsigned: no
need for ADDU because 2s complement

math just works.
Compiler takes care of applying SRL to

unsigned vars and SRA to signed

? ? ?
If an arithmetic/logical instruction has three
operands, how do you add a constant to a

register?

Immediates + instruction formats
Immediates: constants that are encoded as part of an instruction

In RISC-V, register-immediate instructions have rd, rs1, and
immediate operand

Instructions come in different formats. Specific bits in the instruction
(opcodes and funct fields) determine how the CPU should interpret them

register/register

instrs

register/immediate instrs

addi x10, x10, 2 # x10 += 2

xori x12, x11, 0xff # x12 = x11 ^ 0xff

sll x14, x13, 16 # x14 = x13 << 16

Register-register and
Register-immediate instrs

Arithmetic ADD, SUB ADDI

Logical AND, OR, XOR ANDI, ORI, XORI

Shift SLL, SRL, SRA SLLI, SRLI, SRAI

Comparison SLT[U] SLTI[U]

Why no SUBI?

only 12 bits of an I-type instruction are set aside for the immediate

value is sign-extended into 32 bits

need to pay attention to MSB (xori x10, x10, 0xfff will flip all bits, not just the last 12)

loading a large number into a register may take multiple instructions (hint: LUI)

Immediate encodings

Translation of assembly instruction into machine code is almost direct
translation

Unlike compiler, which needs to do things like manage which
variables go into which registers, etc.

Assembler also:

Removes comments

Translates data and code labels to memory addresses relative to PC

Synthesizes pseudo-instructions (instructions specified by
ISA/available to compiler but not implemented by microarchitecture)

e.g. mv rd, rs # rd = rs gets synthesized to add rd, rs, x0

Role of the assembler

Reasons to save registers: function calls, too many variables for registers

Registers are saved in the stack (area of memory reserved for this purpose)

Some ISAs (x86, ARMv7-M) have instructions for pushing and popping and
special register to keep track of stack

In RISC-V: compiler or assembly programmer responsible for managing stack

Saving registers, the stack

Ripes complexMul example

Stores are S-type instructions
s{d|w|h|b} rs2, imm(rs1)
Mem[rs1 + imm] = rs2

Loads are I-type
l{d|w|h|b}[u] rd, imm(rs1)

rd = Mem[rs1 + imm]

Computations ✔

Add two variables together, subtract a constant, perform bit
operations…

Data transfer ✔

Loads and stores from memory

Control logic next week

Conditional and unconditional jumps (support for if-statements,
loops, function calls)

Three basic classes of instructions in most ISAs

Modern computers hinge on two principles:

● Instructions are represented in memory the same way as numbers
● Memory can be altered by programs

First principle means that:

● Instructions live in memory
● The CPU needs to have a way of interpreting an instruction, just as it

would any other data in memory

Stored-program computers

Object file contains different segments (compiler knows the addresses of
these in memory)

data segment: initialized static and global vars

code/text segment: code

bss segment: uninitialized static and global vars

heap and stack: typically come after bss, grow towards each other. Heap
is for dynamically allocated memory. Stack is for return addresses, saving
registers, automatic variables

See Ripes complexMul example for use of data and text segments

Reference slide: programs in memory

https://github.com/mortbopet/Ripes/blob/master/examples/assembly/complexMul.s

