
RISC-V assembly



Quick review: data as bits
Same bits in memory are interpreted differently 
based on context
Each byte in memory has its own address

Code demo on signed/unsigned numbers

By Aeroid - Own work, CC BY-SA 4.0, link

Keep in mind:
● Signed numbers are negated using 2s 

complement
● A signed negative number will always 

have a 1 as the MSB
● Cast to larger numbers: sign-extend 

(copy MSB) for signed, zero-pad for 
unsigned

https://cpp.sh/?source=%2F******************************************************************************%0D%0A%0D%0A++++++++++++++++++++++++++++++Online+C%2B%2B+Compiler.%0D%0A+++++++++++++++Code%2C+Compile%2C+Run+and+Debug+C%2B%2B+program+online.%0D%0AWrite+your+code+in+this+editor+and+press+%22Run%22+button+to+compile+and+execute+it.%0D%0A%0D%0A*******************************************************************************%2F%0D%0A%0D%0A%23include+%3Ciostream%3E%0D%0A%0D%0Ausing+namespace+std%3B%0D%0A%0D%0Aint+main()%0D%0A%7B++++%0D%0A++++int8_t+x__int+%3D+-23%3B%0D%0A++++uint8_t+x_uint+%3D+233%3B%0D%0A++%0D%0A++++cout+%3C%3C+%22x__int+in+binary%3A+%22+%3C%3C+bitset%3C8%3E(x__int)+%3C%3C+endl%3B%0D%0A++++cout+%3C%3C+%22x_uint+in+binary%3A+%22+%3C%3C+bitset%3C8%3E(x_uint)+%3C%3C+endl%3B%0D%0A++++%0D%0A++++%2F%2F+int8_t+x__int_shift+%3D+x__int+%3E%3E+2%3B%0D%0A++++%2F%2F+uint8_t+x_uint_shift+%3D+x_uint+%3E%3E+2%3B%0D%0A++++%0D%0A++++%2F%2F+cout+%3C%3C+%22x__int+shifted%3A+%22+%3C%3C+bitset%3C8%3E(x__int_shift)+%3C%3C+endl%3B%0D%0A++++%2F%2F+cout+%3C%3C+%22x_uint+shifted%3A+%22+%3C%3C+bitset%3C8%3E(x_uint_shift)+%3C%3C+endl%3B%0D%0A++++%0D%0A++++%2F%2F+cout+%3C%3C+%22x__int+shifted+(decimal)%3A+%22+%3C%3C+signed(x__int_shift)+%3C%3C+endl%3B%0D%0A++++%2F%2F+cout+%3C%3C+%22x_uint+shifted+(decimal)%3A+%22+%3C%3C+unsigned(x_uint_shift)+%3C%3C+endl%3B%0D%0A++++%0D%0A++++%2F%2F+cout+%3C%3C+%22x_uint+logical+shifted+(decimal)%3A+%22+%3C%3C+unsigned(x__int_shift)+%3C%3C+endl%3B%0D%0A%7D%0D%0A
https://commons.wikimedia.org/w/index.php?curid=137790829


? ? ?
>> has different behavior on ints vs uints

do you think the decision to use logical vs. arithmetic 
shift is made by the compiler or the CPU?



Each memory address refers to a byte

32-bit integers typically have addresses that are 
multiples of 4 (why?)

Mostly up to the compiler; constrained by ISA

Aligned addressing
Address Value

0x0000 0x4d

0x0001 0xf0

0x0002 0x00

0x0003 0x18



We could interpret ‘0xe7` as 233, -23, or ￩ based on context

Similarly, we can interpret `0x00350513’ as 3474707 or the instruction 
“increment register 10 by 3”

000000000011 01010 000 01010 0010011

Preview: interpreting instructions

“these bits indicate an 
instruction that contains a 

numerical value!”

“this is the register # where 
the result should be put!”

“these bits indicate an add 
instruction!”

“this is the # of the register 
where the input value is!”

“this is the numerical value!”



● Learn what different terms/ideas mean (pipelining, branch prediction, 
how a CPU can take different time on different instructions)

● Understand computer specs when buying parts
● Pull back the magic curtain
● Impress friends and family with computer knowledge
● Understand how hardware affects SW performance
● Hows and whys of specialized hardware
● Understand low-level systems/academic papers about low-level 

systems

Intermission: why are you taking 
this course?



? ? ?
What sorts of operations do we want a 

computer to be able to do?





Definitions (from P&H Chapter 2)
Instruction: a command computer hardware understands and obeys

Machine language: a binary representation of machine instructions

Assembly language: a symbolic representation of machine instructions

High-level language: a portable language such as C, C++, Java that is 
composed of words and algebraic notation

Compiler

Assembler

x++;

addi a0, a0, 1

0x00150513

part 
of 
ISA



We’ll be using RISC-V in class and for the next few assignments

Stems from research out of Berkeley in the 80s

Completely open

Base instruction set is simple but makes a working computer

Started as academic, starting to see real-world use

Why RISC-V?

Important note: not all ISAs are like RISC-V. We’ll keep highlighting the 
similarities/differences between ISAs throughout the course

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.pdf


Computations

Add two variables together, subtract a constant, perform bit 
operations…

Data transfer

Loads and stores from memory

Control logic

Conditional and unconditional jumps (support for if-statements, 
loops, function calls)

Three basic classes of instructions in most ISAs

Data needs to be 
easily accessible by 

the CPU in order to do 
this



Small, fast memory (usually the size of a word, or default data size of a specific 
architecture)

Used by the CPU

Usually addressed separately from main memory

Some have special purposes, some are general purpose (GPR)

In RISC-V, all arithmetic and control computations are done on registers

To compute on memory, first need to load data from memory into register

Called a “register-register” or “load-store” architecture (other example: arm)

Contrast with “register-memory” architecture (example: x86) 

Registers



RV32I: 31 GPRs (x1-x32) – conventions define the 
role of some of these

x0 hard-wired to 0

pc (program counter) – holds address of current 
instruction

RISC-V Specification

https://browncs1952y.github.io/assets/docs/riscv-spec-v2.2.pdf


? ? ?
ISA: model of the computations a CPU can do (interface for 

programmer/compiler)
Microarchitecture: hardware implementation of ISA 

(multiple microarchitectures possible for one ISA, e.g. 
different Intel chips implementing Intel64)

If the ISA is about instructions and microarchitecture is 
about hardware, why does the ISA spec define how many 

registers are available?



Arithmetic and logical operations
RISC-V (32I base instruction set) offers the following: 

Arithmetic: ADD, SUB

Logical: AND, OR, XOR

Shift: SLL, SRL, SRA

Comparison: SLT[U]

Three operands: two source registers (rs1, rs2), one destination (rd)

sub x12, x11, x10 # x12 = x11 - x10

or x13, x13, x14 # x13 |= x14

slt x17, x15, x16 # x17 = x15 < x16 ? 1 : 0

No need for ADDU because 2s 
complement math “just works” (see 
textbook)
Compiler takes care of applying SRL to 
unsigned vars and SRA to signed



? ? ?
If an arithmetic/logical instruction has three 
operands, how do you add a constant to a 

register?



Immediates + instruction formats
Immediates: constants that are encoded as part of an instruction

Separate instructions from register-register (ADD vs ADDI)

In RISC-V, register-immediate instructions have rd, rs1, and 
immediate operand

register/register 

instrs

register/immediate instrs



addi x10, x10, 2 # x10 += 2

xori x12, x11, 0xff # x12 = x11 ^ 0xff

slli x14, x13, 16 # x14 = x13 << 16

Register-register and 
Register-immediate instrs

Arithmetic ADD, SUB ADDI

Logical AND, OR, XOR ANDI, ORI, XORI

Shift SLL, SRL, SRA SLLI, SRLI, SRAI

Comparison SLT[U] SLTI[U]

Why no SUBI?



only 12 bits of an I-type instruction are set aside for the immediate

value is sign-extended into 32 bits

need to pay attention to MSB (xori x10, x10, 0xfff will flip all bits, not just the last 12)

loading a large number into a register may take multiple instructions (hint: LUI)

Immediate encodings



Translation of assembly instruction into machine code is almost direct 
translation

Unlike compiler, which needs to do things like manage which 
variables go into which registers, etc.

Assembler also:

Removes comments

Translates data and code labels to memory addresses relative to PC

Synthesizes pseudo-instructions (instructions available to compiler 
but not implemented by microarchitecture)

e.g. mv rd, rs # rd = rs gets synthesized to add rd, rs, x0

Role of the assembler


