RISC-V assembly

oooooo

e O e e & e



®

Quick review: data as bits

Same bits in memory are interpreted differently

based on context one 32-bit integer arranged as
Each byte in memory has its own address 0AOBOCOD fOl:r:ebrﬁeé in

Code demo on signed/unsigned numbers

—>  a:|0D

——>a+1:|0C
>a+2:|0B
>a+3:[0A

Little-endian

By Aeroid - Own work, CC BY-SA 4.0, link



https://cpp.sh/?source=%2F******************************************************************************%0D%0A%0D%0A++++++++++++++++++++++++++++++Online+C%2B%2B+Compiler.%0D%0A+++++++++++++++Code%2C+Compile%2C+Run+and+Debug+C%2B%2B+program+online.%0D%0AWrite+your+code+in+this+editor+and+press+%22Run%22+button+to+compile+and+execute+it.%0D%0A%0D%0A*******************************************************************************%2F%0D%0A%0D%0A%23include+%3Ciostream%3E%0D%0A%0D%0Ausing+namespace+std%3B%0D%0A%0D%0Aint+main()%0D%0A%7B++++%0D%0A++++int8_t+x__int+%3D+-23%3B%0D%0A++++uint8_t+x_uint+%3D+233%3B%0D%0A++%0D%0A++++cout+%3C%3C+%22x__int+in+binary%3A+%22+%3C%3C+bitset%3C8%3E(x__int)+%3C%3C+endl%3B%0D%0A++++cout+%3C%3C+%22x_uint+in+binary%3A+%22+%3C%3C+bitset%3C8%3E(x_uint)+%3C%3C+endl%3B%0D%0A++++%0D%0A++++%2F%2F+int8_t+x__int_shift+%3D+x__int+%3E%3E+2%3B%0D%0A++++%2F%2F+uint8_t+x_uint_shift+%3D+x_uint+%3E%3E+2%3B%0D%0A++++%0D%0A++++%2F%2F+cout+%3C%3C+%22x__int+shifted%3A+%22+%3C%3C+bitset%3C8%3E(x__int_shift)+%3C%3C+endl%3B%0D%0A++++%2F%2F+cout+%3C%3C+%22x_uint+shifted%3A+%22+%3C%3C+bitset%3C8%3E(x_uint_shift)+%3C%3C+endl%3B%0D%0A++++%0D%0A++++%2F%2F+cout+%3C%3C+%22x__int+shifted+(decimal)%3A+%22+%3C%3C+signed(x__int_shift)+%3C%3C+endl%3B%0D%0A++++%2F%2F+cout+%3C%3C+%22x_uint+shifted+(decimal)%3A+%22+%3C%3C+unsigned(x_uint_shift)+%3C%3C+endl%3B%0D%0A++++%0D%0A++++%2F%2F+cout+%3C%3C+%22x_uint+logical+shifted+(decimal)%3A+%22+%3C%3C+unsigned(x__int_shift)+%3C%3C+endl%3B%0D%0A%7D%0D%0A
https://commons.wikimedia.org/w/index.php?curid=137790829

>> has different behavior on ints vs uints
do you think the decision to use logical vs. arithmetic
shift is made by the compiler or the CPU?



Aligned addressing

Each memory address refers to a byte

32-bit integers typically have addresses that are
multiples of 4 (why?)

Mostly up to the compiler; constrained by ISA

Address
0x0000
0x0001
0x0002

0x0003

Value
Ox4d
0xfO
0x00

0x18



®

Preview: interpreting instructions

We could interpret ‘Oxe7 as 233, -23, or < based on context

Similarly, we can interpret "'0x00350513" as 3474707 or the instruction
“increment register 10 by 3”

000000000011 01010 000 01010 001001

/

“this is the numerical value!”

“these bits indicate an
instruction that contains a

. numerical valuel!”
“these bits indicate an add

instruction!”

“this is the # of the register “this is the register # where
where the input value is!” the result should be put!”



®

Intermission: why are you taking
this course?

e Learn what different terms/ideas mean (pipelining, branch prediction,
how a CPU can take different time on different instructions)
Understand computer specs when buying parts

Pull back the magic curtain

Impress friends and family with computer knowledge

Understand how hardware affects SW performance

Hows and whys of specialized hardware

Understand low-level systems/academic papers about low-level
systems



What sorts of operations do we want a
computer to be able to do?






®

Definitions (fxrom P&H Chapter 2)

Instruction: a command computer hardware understands and obeys

Machine language: a binary representation of machine instructions
0x00150513

Assembler

Assembly language: a symbolic representation of machine instructions

addi a®, a0, 1

Compiler

High-level language: a portable language such as C, C++, Java that is

composed of words and algebraic notation
X++;



Why RISC-V?

We'll be using RISC-V in class and for the next few assignments
Stems from research out of Berkeley in the 80s

Completely open

Base instruction set is simple but makes a working computer

Started as academic, starting to see real-world use

Important note: not all ISAs are like RISC-V. We'll keep highlighting the
similarities/differences between ISAs throughout the course


https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.pdf

®

Three basic classes of instructions in most ISAs

Computations

Add two variables together, subtract a constant, perform bit

operations..
P Data needs to be
Data transfer easily accessible by
the CPU in order to do
Loads and stores from memory this

Control logic

Conditional and unconditional jumps (support for if-statements,
loops, function calls)



Registers

Small, fast memory (usually the size of a word, or default data size of a specific
architecture)

Used by the CPU

Usually addressed separately from main memory

Some have special purposes, some are general purpose (GPR)

In RISC-V, all arithmetic and control computations are done on registers
To compute on memory, first need to load data from memory into register
Called a “register-register” or “load-store” architecture (other example: arm)

Contrast with “register-memory” architecture (example: x86)



RISC-V Specification

RV32I: 31 GPRs (x1-x32) — conventions define the
role of some of these

x0 hard-wired to O

pc (program counter) — holds address of current
instruction

Register | ABI Name | Description Saver
x0 zero Hard-wired zero —

x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —

x4 tp Thread pointer —

x5 t0 Temporary/alternate link register | Caller
x6-7 t1-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
£0-7 ft0-7 FP temporaries Caller
£8-9 fs0-1 FP saved registers Callee
£10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller

XLEN-1

x0 / zero

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17,

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

XLEN-1

XLEN

pc

XLEN



https://browncs1952y.github.io/assets/docs/riscv-spec-v2.2.pdf

ISA: model of the computations a CPU can do (interface for
programmer/compiler)
Microarchitecture: hardware implementation of ISA
(multiple microarchitectures possible for one ISA, e.g.
different Intel chips implementing Intel64)

If the ISA is about instructions and microarchitecture is
about hardware, why does the ISA spec define how many
registers are available?



®

Arithmetic and logical operations

RISC-V (32l base instruction set) offers the following:

Arithmetic: ADD, SUB No need for ADDU because 2s

Logical: AND, OR, XOR complement math “just works” (see
' S textbook)
Shift: SLL, SRL, SRA Compiler takes care of applying SRL to

unsigned vars and SRA to signed
Comparison: SLT[U]

Three operands: two source registers (rs], rs2), one destination (rd)
sub x12, x11, # x12 = x11 - x10

or x13, x13, # x13 |= x14

slt x17, x15, I x17 x15 < x16 ? 1 : O



If an arithmetic/logical instruction has three
operands, how do you add a constant to a
register?



®

Immediates + instruction formats

Immediates: constants that are encoded as part of an instruction
Separate instructions from register-register (ADD vs ADDI)

In RISC-V, register-immediate instructions have rd, rsl, and
immediate operand

: ister
31 25 24 20 19 15 14 12 11 76 0 reg\S’C?TI resg
funct? | rs2 | sl | funct3 | rd | opcode | R-type instr
imm(11:0 rsl funct3 rd opcode I-type s
imm[11:5] | 2 | sl | funct3 | imm[4:0] | opcode | S-type inStr:‘)ediOte

imm|31:12] | rd | opcode |U-type




Register-register and
Register-immediate instrs Why no SUBI?

Arithmetic ADD, SUB ADDI

Logical AND, OR, XOR ANDI, ORI, XORI
Shift SLL, SRL, SRA SLLI, SRLI, SRAI
Comparison SLT[U] SLTI[U]

addi x10, x10, # x10 += 2
xori x12, x11, # x12 = x11 N Oxff
slli x14, x13, # x14 = x13 << 16



Immediate encodings

31 30 20 19 12 11 10 5 4 1 0
| — inst[31] — | inst[30:25] | inst[24:21] | inst[20] | I-immediate
| — inst[31] — | inst[30:25] | inst[11:8] | inst[7] | S-immediate
| — inst[31] — | inst[7] [inst[30:25] | inst[11:8] [ 0 | B-immediate
[inst[31] |  inst[30:20] [ inst[19:12] | — 0 — | U-immediate
| — inst[31] — | inst[19:12] |inst[20] | inst[30:25] |inst[24:21]| O | J-immediate

only 12 bits of an I-type instruction are set aside for the immediate
value is sign-extended into 32 bits
need to pay attention to MSB (xori x10, x10, Oxfff will flip all bits, not just the last 12)

loading a large number into a register may take multiple instructions (hint: LUI)



Role of the assemblerxr

Translation of assembly instruction into machine code is almost direct
translation

Unlike compiler, which needs to do things like manage which
variables go into which registers, etc.

Assembler also:
Removes comments
Translates data and code labels to memory addresses relative to PC

Synthesizes pseudo-instructions (instructions available to compiler
but not implemented by microarchitecture)

e.g.mv rd, rs # rd = rs getssynthesized toadd rd, rs, xO



