
Welcome/what is 
architecture?
If the room is full, you can watch the 
recording!
Waitlist is being handled through HW0 (more 
info during lecture)



Staff 
introductions!



? ? ?
How does a computer actually run a program? 

Be as detailed as possible!



Instructions get loaded into memory
Instruction: a representation that gets interpreted as an operation in 
machinery
Memory: a region that can store data, it can persist or be volatile
Memory looks like a series of charges and not charges
CPU has actual hardware that does operations
Each operation has several inputs that the CPU can react to them

For example: a bit in an instruction can decide whether something is 
an add, multiply, etc

Bits are encoded in zeroes and ones (in hardware: electrical charges)
CPU has hardware that can react to the electrical charges



How is a program represented on a computer?

How does a CPU actually translate stored bits in memory into tasks?

How do we load and store data efficiently?

Can we speed it up by parallelizing instructions? Data?

What is the interplay between architecture and OS? Compilers? Security?

What is the history of the field? How do/did market forces shape 
engineering decisions?

What’s fresh and what’s next?

Questions we’ll answer



? ? ?
How do we measure whether one computer is 

“better” than another? Get creative – go 
beyond “speed”



Speed – how quickly can one computer execute a given program?
Can I run concurrent processes?
How much power does it use?
How large its online community is?
Size of its memory?
Instructions or dataflow per second?
Security?
Resilience?
Production costs?
Does it have accelerators/specialized hardware?
Manufacturing guarantees?
Backdoors?
Learning curve, adoptability
Footprint?
Correctness of software?
Environmental impact
Longevity?
Customizability?



Fine, but what is architecture?
Like many terms in CS, “architecture” is overloaded

“Computer architecture” describes the structure/organization of a 
computer; specifically, how HW and SW interact

Three general parts:

● ISA (Instruction Set Architecture): what instructions can the computer 
execute and how are they defined?

● Microarchitecture: how does the CPU actually implement the ISA?
● Hardware system: what physically makes up the computer?

Computer architecture gets interesting when we consider 
the interplay between these parts!



Try to “invent” them ourselves as much as possible

What we want a computer to do → Definition of ISA→ 
Microarchitecture implementation

Simulate!

Ripes for low-level design, gem5 for more complicated design

Allows us to evaluate design choices

Caveat: need to understand our simulators and their drawbacks

Explore emerging applications

How will we study these things?



? ? ?
Why should software people care about how a 

computer works?



It’s cool to look under the hood!
Can write faster, more efficient programs
Can gain a deeper understanding of low-level code
Diagnose performance issues
Prepares you to work on limited hardware
Learn how to use dedicated hardware



Course website: browncs1952y.github.io

Course structure and policies



Handled through HW0 (also submit an override request on cab!!)

Randomized by day

Need to be caught up with HW1 to be admitted

Waitlist



Ways you can give me feedback
E-mail
In person (after class, in office hours)
Anonymous form
Via TAs (anonymous or not)
DE&I, accessibility, culture issues: department and university-wide 
resources
→ Feedback only works if I follow up on it



Course culture discussion


